{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# IMinuit\n",
"\n",
"Minuit - программа численной минимизации функций многих переменных, широко применяемая в физике элементарных частиц. Есть два питонских интерфейса, PyMinuit и IMinuit (он особенно удобен в ipython)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"from iminuit import Minuit\n",
"%pylab inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Простой пример\n",
"\n",
"Определим квадратичную функцию от двух параметров."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def f(a,b):\n",
" return 10*a**2+10*b**2-16*a*b+12*a-24*b"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Создадим объект класса `Minuit`. `a` и `b` - грубые догадки, около чего надо искать минимум; `error_a` и `error_b` - оценки точности этих догадок (в начале минимизации программа будет делать шаги порядка этих величин, потом они будут уменьшаться). Пределы изменения задавать не обязательно. Валичина `errordef` показывает, насколько функция должна быть выше своего минимума, чтобы это считалось отклонением на одну сигму; поскольку минимизируемая функция - это, как правило, $\\chi^2$, значение 1 по умолчанию вполне годится."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib64/python3.6/site-packages/ipykernel_launcher.py:2: InitialParamWarning: errordef is not given. Default to 1.\n",
" \n"
]
}
],
"source": [
"m=Minuit(f,a=0,error_a=1,limit_a=(-10,10),\n",
" b=0,error_b=1,limit_b=(-10,10))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Наиболее популярный метод минимизации - `migrad`."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" \n",
" \n",
" FCN = -17.999997281186666 | \n",
" TOTAL NCALL = 36 | \n",
" NCALLS = 36 | \n",
"
\n",
" \n",
" EDM = 2.7187527367825896e-06 | \n",
" GOAL EDM = 1e-05 | \n",
" \n",
" UP = 1.0 | \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
" Valid | \n",
" Valid Param | \n",
" Accurate Covar | \n",
" PosDef | \n",
" Made PosDef | \n",
"
\n",
" \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" False | \n",
"
\n",
" \n",
" Hesse Fail | \n",
" HasCov | \n",
" Above EDM | \n",
" | \n",
" Reach calllim | \n",
"
\n",
" \n",
" False | \n",
" True | \n",
" False | \n",
" | \n",
" False | \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" \n",
" \n",
" + | \n",
" Name | \n",
" Value | \n",
" Parab Error | \n",
" Minos Error- | \n",
" Minos Error+ | \n",
" Limit- | \n",
" Limit+ | \n",
" FIXED | \n",
"
\n",
" \n",
" \n",
" 1 | \n",
" a | \n",
" 0.999823 | \n",
" 0.526788 | \n",
" 0 | \n",
" 0 | \n",
" -10.0 | \n",
" 10.0 | \n",
" | \n",
"
\n",
" \n",
" \n",
" 2 | \n",
" b | \n",
" 1.99935 | \n",
" 0.526776 | \n",
" 0 | \n",
" 0 | \n",
" -10.0 | \n",
" 10.0 | \n",
" | \n",
"
\n",
" \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"({'fval': -17.999997281186666, 'edm': 2.7187527367825896e-06, 'nfcn': 36, 'up': 1.0, 'is_valid': True, 'has_valid_parameters': True, 'has_accurate_covar': True, 'has_posdef_covar': True, 'has_made_posdef_covar': False, 'hesse_failed': False, 'has_covariance': True, 'is_above_max_edm': False, 'has_reached_call_limit': False},\n",
" [{'number': 0, 'name': 'a', 'value': 0.9998227792225478, 'error': 0.5267876810263843, 'is_const': False, 'is_fixed': False, 'has_limits': True, 'has_lower_limit': True, 'has_upper_limit': True, 'lower_limit': -10.0, 'upper_limit': 10.0},\n",
" {'number': 1, 'name': 'b', 'value': 1.9993477581584944, 'error': 0.5267762744877214, 'is_const': False, 'is_fixed': False, 'has_limits': True, 'has_lower_limit': True, 'has_upper_limit': True, 'lower_limit': -10.0, 'upper_limit': 10.0}])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.migrad()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Значения параметров."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': 0.9998227792225478, 'b': 1.9993477581584944}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Значение функции в точке минимума."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-17.999997281186666"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.fval"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ошибки параметров."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': 0.5267876810263843, 'b': 0.5267762744877214}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.errors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Если, скажем, $a$ - наш окончательный физический результат, то мы напишем в статье $a=1\\pm0.5$. На самом деле у нас есть больше информации, поскольку ошибки $a$ и $b$ сильно скоррелированы. Матрица корреляции ошибок:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((0.27776493841711364, 0.22220727646667665),\n",
" (0.22220727646667665, 0.27776101882046583))"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.matrix()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Минимизация квадратичной формы сводится к решению системы линейных уравнений, а матрица корреляции ошибок - обратная матрица этой системы. В таком простом случае не имеет смысла использовать инструмент минимизации произвольных функций, такой, как Minuit."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 0.27777778, 0.22222222],\n",
" [ 0.22222222, 0.27777778]])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"M=array([[10.,-8.],[-8.,10.]])\n",
"M=inv(M)\n",
"M"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 1.],\n",
" [ 2.]])"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"M@array([[-6],[12]])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Нарисуем контуры, соответствующие отклонению на 1, 2 и 3 сигмы от оптимальной точки."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([-1.03835166, -0.997266 , -0.95618035, -0.9150947 , -0.87400905,\n",
" -0.8329234 , -0.79183775, -0.7507521 , -0.70966645, -0.6685808 ,\n",
" -0.62749514, -0.58640949, -0.54532384, -0.50423819, -0.46315254,\n",
" -0.42206689, -0.38098124, -0.33989559, -0.29880994, -0.25772428,\n",
" -0.21663863, -0.17555298, -0.13446733, -0.09338168, -0.05229603,\n",
" -0.01121038, 0.02987527, 0.07096092, 0.11204657, 0.15313223,\n",
" 0.19421788, 0.23530353, 0.27638918, 0.31747483, 0.35856048,\n",
" 0.39964613, 0.44073178, 0.48181743, 0.52290309, 0.56398874,\n",
" 0.60507439, 0.64616004, 0.68724569, 0.72833134, 0.76941699,\n",
" 0.81050264, 0.85158829, 0.89267395, 0.9337596 , 0.97484525,\n",
" 1.0159309 , 1.05701655, 1.0981022 , 1.13918785, 1.1802735 ,\n",
" 1.22135915, 1.26244481, 1.30353046, 1.34461611, 1.38570176,\n",
" 1.42678741, 1.46787306, 1.50895871, 1.55004436, 1.59113001,\n",
" 1.63221567, 1.67330132, 1.71438697, 1.75547262, 1.79655827,\n",
" 1.83764392, 1.87872957, 1.91981522, 1.96090087, 2.00198652,\n",
" 2.04307218, 2.08415783, 2.12524348, 2.16632913, 2.20741478,\n",
" 2.24850043, 2.28958608, 2.33067173, 2.37175738, 2.41284304,\n",
" 2.45392869, 2.49501434, 2.53609999, 2.57718564, 2.61827129,\n",
" 2.65935694, 2.70044259, 2.74152824, 2.7826139 , 2.82369955,\n",
" 2.8647852 , 2.90587085, 2.9469565 , 2.98804215, 3.0291278 ]),\n",
" array([ -3.83516801e-02, 2.73397445e-03, 4.38196290e-02,\n",
" 8.49052835e-02, 1.25990938e-01, 1.67076592e-01,\n",
" 2.08162247e-01, 2.49247901e-01, 2.90333556e-01,\n",
" 3.31419210e-01, 3.72504865e-01, 4.13590519e-01,\n",
" 4.54676174e-01, 4.95761828e-01, 5.36847483e-01,\n",
" 5.77933138e-01, 6.19018792e-01, 6.60104447e-01,\n",
" 7.01190101e-01, 7.42275756e-01, 7.83361410e-01,\n",
" 8.24447065e-01, 8.65532719e-01, 9.06618374e-01,\n",
" 9.47704028e-01, 9.88789683e-01, 1.02987534e+00,\n",
" 1.07096099e+00, 1.11204665e+00, 1.15313230e+00,\n",
" 1.19421796e+00, 1.23530361e+00, 1.27638926e+00,\n",
" 1.31747492e+00, 1.35856057e+00, 1.39964623e+00,\n",
" 1.44073188e+00, 1.48181754e+00, 1.52290319e+00,\n",
" 1.56398885e+00, 1.60507450e+00, 1.64616015e+00,\n",
" 1.68724581e+00, 1.72833146e+00, 1.76941712e+00,\n",
" 1.81050277e+00, 1.85158843e+00, 1.89267408e+00,\n",
" 1.93375974e+00, 1.97484539e+00, 2.01593105e+00,\n",
" 2.05701670e+00, 2.09810235e+00, 2.13918801e+00,\n",
" 2.18027366e+00, 2.22135932e+00, 2.26244497e+00,\n",
" 2.30353063e+00, 2.34461628e+00, 2.38570194e+00,\n",
" 2.42678759e+00, 2.46787324e+00, 2.50895890e+00,\n",
" 2.55004455e+00, 2.59113021e+00, 2.63221586e+00,\n",
" 2.67330152e+00, 2.71438717e+00, 2.75547283e+00,\n",
" 2.79655848e+00, 2.83764414e+00, 2.87872979e+00,\n",
" 2.91981544e+00, 2.96090110e+00, 3.00198675e+00,\n",
" 3.04307241e+00, 3.08415806e+00, 3.12524372e+00,\n",
" 3.16632937e+00, 3.20741503e+00, 3.24850068e+00,\n",
" 3.28958633e+00, 3.33067199e+00, 3.37175764e+00,\n",
" 3.41284330e+00, 3.45392895e+00, 3.49501461e+00,\n",
" 3.53610026e+00, 3.57718592e+00, 3.61827157e+00,\n",
" 3.65935723e+00, 3.70044288e+00, 3.74152853e+00,\n",
" 3.78261419e+00, 3.82369984e+00, 3.86478550e+00,\n",
" 3.90587115e+00, 3.94695681e+00, 3.98804246e+00,\n",
" 4.02912812e+00]),\n",
" masked_array(data =\n",
" [[-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" ..., \n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]],\n",
" mask =\n",
" [[ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" ..., \n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]],\n",
" fill_value = 1e+20),\n",
" )"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XV8lWUbwPHffbazDrZRI0Z3l3QjHUqJiorx+mIrdgsm\nBgZYKAiYr4BISUl3N6NrwGDddeJ6/3imLy8lsPOcs437+/ns47bznOe+h9u5zl3XpUQETdM0TTuf\nxdMd0DRN0wofHRw0TdO0i+jgoGmapl1EBwdN0zTtIjo4aJqmaRfRwUHTNE27iA4OmqZp2kVMDw5K\nKS+l1Hal1LxLPOarlPqPUuqwUmqjUqqy2f3RNE3T/pk7Rg5PANGXeex+IFlEqgMfA2Pd0B9N0zTt\nH3ibeXOlVAWgD/A2MOoSlwwA3sj/fAYwQSml5ArHtkuWLCmVK1d2cU81TdOKt61btyaISKmrvd7U\n4AB8AjwHBF/m8fJADICI2JVSqUAEkHC5G1auXJktW7a4up+apmnFmlLqxLVcb9q0klKqLxAnIluv\ndNklvnfRqEEp9aBSaotSakt8fLzL+qhpmqZdmplrDm2B/kqp48AvQBel1A8XXHMKqAiglPIGQoGk\nC28kIhNFpLmINC9V6qpHRZqmadp1Mi04iMiLIlJBRCoDw4BlIjL8gsvmAPfkfz44/xqdJlbTNM3D\nzF5zuIhSagywRUTmAJOA75VShzFGDMPc3R9N0zTtYm4JDiKyAliR//lr530/Bxjijj5omqZpV0+f\nkNY0TdMuooODpmmadhEdHDRN07SL6OCgaZqmXUQHB03TNO0iOjhomqZpF9HBQdM0TbuIDg6apmna\nRXRw0DRN0y6ig4OmaZp2ER0cNE3TtIvo4KBpmqZdRAcHTdM07SI6OGiapmkX0cFB0zRNu4gODpqm\nadpF3F4JTtM0zV1EnOA4AfZD4FUZZa3p6S4VGTo4aJpWLIhkg+0g2KMR236wR4P9AEjW/67x648K\nfhblVcaDPS0aTAsOSik/YBXgm9/ODBF5/YJrRgAfAKfzvzVBRL41q0+aphUP4kgE+/78QLAPbNHg\nOAY4jQtUEHjXAf/BKO864F0NyV0OmZOQ3D8h8CEIvBelfDz6cxRmZo4ccoEuIpKhlLICa5RSC0Rk\nwwXX/UdEHjWxH5qmFVF/TwvZohF7tBEE7PvBGfe/iyzlwFoH/HqirLXBuy54VUAp9X/3Uj6NEf9B\nSPp7SMZHkDMXQsagfJq6+acqGkwLDiIiQEb+l9b8DzGrPU3TijaRXGMayLbvMtNC3uBdDXxao6x1\njCBgrY2ylLjqNpR3FCrsCyRnGZI2Gkm6HfEfhgp+GmUJMecHK6JMXXNQSnkBW4HqwOcisvESlw1S\nSnUADgJPiUiMmX3SNM3zxJlhvPjb9iG2vfmB4DDgMC5QwedNC9UGa13wru6yaSDl1wV8WiIZn0LW\nNGOqKfhl8Ot10YjjRqWMN/gmN6JUCWAW8JiI7Dnv+xFAhojkKqVGAkNFpMslnv8g8CBAVFRUsxMn\nTpjeZ03TCk5EwBkPdmNdQGzRxueOk/+7yFLKCATWeihrXeNzr4pue5EW214k9RWw7wXfjqjg11He\nFdzStjsppbaKSPOrvt4dwQFAKfU6kCkiH17mcS8gSURCr3Sf5s2by5YtW8zooqZpBWCsDxw3RgN/\nrw9EgzPxfxd5VQDv/CCQPzWkvEp7rM9/EbFD1vfGSAJBBT0OAfegVPHZ0HmtwcHM3UqlAJuIpCil\n/IFuwNgLrokUkdj8L/sD0Wb1R9M01xP7UchZgOSuM0YEkpn/iBW8q4NvJ2O3kLUOeNdGWYI92t/L\nUcobAu8Fvx5I2hgkfSxkz4HQN1HWhp7unkeYGRYjgan5IwIL8KuIzFNKjQG2iMgc4HGlVH/ADiQB\nI0zsj6ZpLiCOs5D9O5Iz31gwRoG1PvgPQHnXB2s98K5WJLeJKq9yUOJLyF2MpL2JJA5BAoajgp5C\nWYI83T23ctu0kqvoaSVNcz+RPMj5E8meCXlrASdYm6L8eoNfd5RXWU930eXEmY5kfAxZP4KlNCrk\nNZTfzZ7u1nUrNNNKmqYVbSIC9n1GQMieB5IClkgIHInyH4jyjvJ0F02lLMGokNcQvwFI2itIyiOI\nb1cjSHhFerp7ptPBQdO0/yPOJMieawQF+37AB/xuRvkPMs4YKC9Pd9GtlE8jiPgNsqYi6Z8hCb0h\n6AkIGF6sFqwvVHx/Mk3TrpqIHfLWIFm/Qe5SwAbe9VEhr4Nfn2s6aFYcKWWFwAfAtyeSPhpJfwey\nZ0PoGJS1gae7ZwodHDTtBib2Y/nTRr8bKSlUGATcifIfhLLW8nT3Ch3lXQFKTDR2aKW/nb9gfRcq\n6Ilit2Ctg4Om3WDEmQE5C5HsGWDbBliMw1/+rxlbT4vgLiN3UkqBf2/wbYekjzNOWOcshCK+YH0h\nHRw07QYgImDbaowSchYY+Yq8qqCCnjG2oOoU1tdMWUJQoW8g/rcgaa8aC9b+g1EhbxeLFBw6OGha\nMSaOc8aZhOyZxullFQh+vVH+g8HapFi8iHma8mkMEb8Z214zvwXvWhB4j6e7VWA6OGhaMSOSB7kr\njICQuxLjTEJzVNBI8O2JsgR4uovFjlJWCHrWWMNJHws+LYwUIUWYDg6aVkyI7WD+tNFscCaBpTQE\nPmAsLntX8XT3ij1jLWIokrsUHDFGJtkiTAcHTSvCxJkGOfOMoGDbDVjBtwsqYBD4tCvW+/ALI8n+\nFSzh4NvZ010pMP2bo2lFjIgT8tYj2b9BzmIgF7xroYJfNBaXLeGe7uINSewxkLsMAh8sFju+dHDQ\ntCJCnOmQ9QOS9Ss4T4MKgYBBxuKydz29uOxhkvUjYEEF3OnprriEDg6aVsiJIw7JmgpZP4NkgE8b\nlP/TRkoL5evp7mmAOLMgewb49Sg2SQh1cNC0QkocZ5HMryFrOmAHv56owAeL/C6YYinnd5A0VEDR\n38L6Fx0cNK2QEUfseUFBwP9WVOC/i30W1KJKRJDMaeBdH6yNPd0dl9HBQdMKCXGcRTK+NKYnAPwH\n5geF4lfPuFjJWwuOo6jQ94vVuo8ODppmIsnbAY5T4NMS5VXqyhc7YozA4D8IFfRvlFd593RSKxDJ\nmgqWkuDX29NdcSkdHDTNJJIxHsmaCb6tIXsWBD1mpFq4DOXTAkqtRHmVdGMvtYIQ+3HjFHrgo8Vi\n++r5TAsOSik/YBXgm9/ODBF5/YJrfIFpQDMgEbhNRI6b1SdNcxdxpiG2faiSf6AsAUjmFCRnDigr\nylrvss8rqoEhLTeH6Ph49iXEczAxgdj0dM6kpxGbkU7pwCCGN2zM3Q0b42WxeLqrLiVZPwBWVMDt\nnu6Ky5k5csgFuohIhlLKCqxRSi0QkQ3nXXM/kCwi1ZVSw4CxwG0m9knTTCH2k0j2TJRPC5RvO5Ql\nBHEmQN4G8OsCvl1ROXORnKVXDA6FnYhwKi2NfQlxRMfHE50Qx774eE6np/19TbifP+VCQqgaHk7b\nqErsi4/jzVXLmXMgmve69aBWRNEMgBcSZwZkzwS/Xv88ZVgEmRYcRESAjPwvrfkfcsFlA4A38j+f\nAUxQSqn852pakSB5O5G0V8C3PZI1FcldiQp6HOV/C5K3AeXXBeVdEfGuY1Rbsx8rErmOcu12DiUl\nsi8+juiE+PxgEE96Xi4AFqWoUiKMJpGR3NGgIXVLlqZuqdKUCgz8v/uICHMP7mfMyuX0//l7Rja/\niYebt8TXu4jPamfPBMlEBd7t6Z6YwtT/O8ooNrsVqA58LiIbL7ikPBADICJ2pVQqEAEkXHCfB4EH\nAaKi9HY+rZCx7wdrAyzBzxk7jtLegbw14FUebIeQ3HUo3zbG147ToII93eOLJGRlEf33aCCe6Pg4\njiQn4ch/nxZgtVKnZCn616pN3VKlqVuyFDUjSuJvtf7jvZVS9K9Vh3ZRlXhr1QrGb9rAosOHGHtz\nTxqVKZoHxkScSNb3Rtpza0NPd8cUpgYHEXEAjZVSJYBZSqn6IrLnvEsute/rolGDiEwEJgI0b95c\njyo0jxHJQzI+BUD5dkP5NDGyn6pAxJlinI71bYvY9qB8O6GstZGsH1C+bVDWmkYKDMny6M9wKi2V\n7Wdj/54Wik6IJy4z8+/HI4OCqF2yNDdXq06dkqWoU6o0lUJLYCngNs1w/wDG9ehNv1q1eXnpEgb9\n+hP/atqcJ1u2KXqjiNyV4DiJCnrK0z0xjVv+j4hIilJqBdATOD84nAIqAqeUkT4yFEhyR5807VqJ\n5CApT4GlBMraBEl/F4KeMrJw4gTHSbCUAL+ekDYGJA8VMAzJWYIz5RmjJKdPe2Pbo5udzUhn/qGD\nzDu4n53nzgJgtVioHh5Bu4qVqFOqtBEISpYizN/f1L50rlyVhcNH8O6alXy9dTN/Hj3C2G49aBpZ\nztR2XcnYvloG/Lp7uiumMXO3UinAlh8Y/IFuGAvO55sD3AOsBwYDy/R6g1ZoiQ1UoFFM3qssKH8k\nYxwq7BsQB9j2Il4VUZYwxFISyZmP8m2LKvEpOI6BDEP5NHdbd3PsNhYfOcyMfXtZG3MCAeqXKs0L\nbTvQLqoS1cMj8PHyclt/zhfi68u7XbvTu3pNXly2mCHTf+a+Js0Y1artVU1VeZLYDkHeOlTQKKPI\nTzFl5sghEpiav+5gAX4VkXlKqTHAFhGZA0wCvldKHcYYMQwzsT+aVjDORMAGYkfEifLvh2T9Ankb\nUf59jWCQnQWB9+fXZDYOsSlLEFgauKWLIsKuuHPM2LeHOQf2k56XS/ngEB67qTX9a9WmaljhSufd\nvlJlFtxxD2PXrWbS9q1/jyJuKl94T4VL1jTAFwKGerorplJF7Y168+bNZcuWLZ7uhlaMSfYsJGc5\nyqeRkdfovPoIzuSHjK2q+WmZJWc5kvEhlpLzEdteYzEaBc54VNjnKO/qbulzQlYWv+/fx4zovRxM\nTMDXy5ue1WswuG49WleIKvB6gTusiznJi0sXcyotlbsbNeGZ1u0I9ClcB8vEmYLEdQD/flhC3/Z0\nd66JUmqriFz10LWIrQJpmnnEkYCkPASWMFTAvUjmFyhxIoEPAA6U8kYF3IVkfAR+vUCVQPl1RrKm\nILZo4/xCiY/BGYey1je9v3ank5XHjzF93x6WHT+K3emkcZlI3urcjb41axPiW7TSebepGMWCO+/h\nw3WrmbpzO8uOHeXdrt1pU7EQ7VDM+hXIQQUUz+2r59PBQdPyKa+SEPz8/9YFHMfAmZKfTM34U1G+\nbZCcuUjmJJT/rYgz1ViE9q6Wf4/S4FXa1H4eTkpkxr49zNofTXxWJhH+AYxo1ITBdetTs4gfMAuw\nWnmtYxd61ajJ838uZvis6dzRoBEvtO1AkIdHESJ2o6CPTyuUtZZH++IOOjho2nmUT3MjBXPGJ5A1\nBXw6QM5C8GmNsoQa1wQ9DrnLkLTR4ExCBdxlel6d9Nxc5h86wIx9e9h2NhZvi4XOlaswuE59OlWu\ngtVDC8tmaVGuAvNvv4uPN6xl0vatnE5L5bsBgzzbqdw/wRmLCnjVs/1wEx0cNO0CSinwrgEll4Dj\nNJIzF+VMh4AhiDMTLCWNNQef1ijvqqb1wynCxlMxzIjey4LDB8mx26kZHsFL7ToyoHYdSgUE/vNN\nijB/q5WX2nfiRGoK22LPeLo7SOZU8KoAvp093RW30MFB0y5B+fc1PvEqjeQsAGcyYtttLFQHDAWv\nsqYFhtj0dKbv28PM6L3EpKUS7OPLrbXrMrReAxqWLlOsagZcjdiMDGqX9GzuIrHtBdtWVPCLGBsw\niz8dHDTtnzgTwNoYZW0A3rVMmUISEbbGnmHqzm0sPHwIhwhtKkYxqnVbelSrjp938d1PfyWn0lLZ\nFx/HIy1aerQfkvEFqEDwH+zRfriTDg6adgERAWc8kjkZ8taBTwvwM6YSXB0YRIRlx44yfvMGdp07\nS4ivL/c1acbwBo2pGBrq0raKoqk7t6OA2+q555zIpYhtN+QuMZIpWgpfXiyz6OCg3bDEfhgs4f93\njgGMNQdRfkYltrCJxmloV7ctwp9HjzB+03r2xMcRFRLKmE5dGVinHgGF/ISwu6Tn5vKfvbvpVaMm\n5YJDPNIHcWYiqS+BCoOAER7pg6fo4KDdcMSZgWR+AZlTIOA2VMjrF12jLCEQeJfr2xZhydHDjN+0\ngb3xcVQKLcH73XowoFadYrfjqKCm79tDRl4eDzRxX8qR84k4kdRnwH4YFfaNcdL9BqKDg3bDEBHI\nmY+kjwXnOfAfjAp81C1tO/8KChvXsy8hnkqhJfjg5p4MqFUH72JWHc0V7E4nU3Zuo0W58jT0UFpv\nSX8fcpeigl9B+bbzSB88SQcH7YYgtkNI+ptGZTbveqgSnxnptk3mFGHRkUOM37SB/TooXLXFRw5z\nKi2Nl9t38kj7kjkZsiZDwHAIcP0IsijQwUEr1sSZgWRMgKxpRkbVkDfA/zbTtyM6RVh4+BDjN63n\nQGICVUqEMa57L/rWrK2DwlWYvH0LUSGhdKtSze1tS/Y8JP09o/xn8Ms33Nbhv+jgoBVL/5tCeg+c\n8cYUUvDTFy0+u5oRFA7y2aYNHExMoGpYGOO696ZfzVp46aBwVbbHnmHb2Vhe69DZ7f9mkrsWSX0e\nfFqiQt+/Yc40XIoODlqxY0whjYG8jeBdH1XicyPDqokcTicLDh9kwqYNHExKpFpYOJ/06E2fGjoo\nXKvJO7YS7OPLkLrmJy88n9j2IimPgndVVIkvUKpoJS50NR0ctGLDmEIaD1nfgwpChYwB/yGmvvtz\nOJ38cfgg4zeu53ByEtXDwvm0Zx96V6+pg8J1iElNZcHhQzzQpJlb03WL/SSS/ACoUFTYtzfUeYbL\n0cFBK/KMKaR5+buQ4o2AEDzK1Ckkh9PJvEMHmLBpA0eSk6gRHsH4nn3pVaNmkaidUFh9t3MbFqW4\np1FTt7UpjkQk+X4QBypiUn6hJk0HB61IE9tBJG0M2Da5ZQrpr8Nr769bzZHkJGqGRzChV196VtdB\noaBSc3L4de9u+taoRWSwe965izMTSf4XOM6hwqeivN2/AF5YmVlDuiIwDSgLOIGJIvLpBdd0AmYD\nx/K/9ZuIjDGrT1rxYUwhfZY/hRTslimkvXHneHv1SjacjqF6WDgTevWjZ/UaOii4yM97dpFls/Gv\npu459CZiQ1IeB3u0scbghq3NRYmZIwc78LSIbFNKBQNblVJLRGTfBdetFpG+JvZDK0aMKaQ5+VNI\nieA/NH8KKcy0NpOzs/lw/Rp+2bOLEn5+jO7UldvrN9RbUl0oz+Fgys5ttKtYiTqlzC2WBH+dfn4R\n8lajQt5B+d0YabivhWnBQURigdj8z9OVUtEYFdcvDA6adlXEtj9/CmkLWBugwr5CWRua1p7D6eQ/\ne3fz4fo1pOfmcm/jZjzeshUhvn6mtXmtHHYHMQfOcGTHcY7vOUludh5KKZSCslXKcPPdHQgMLfx1\nH+Ye3E9cZiYfdOvplvYk4yPImYMKegoVcONkWr0WbllzUEpVBpoAGy/xcGul1E7gDPCMiOx1R5+0\nokMk1zjIlvlt/hTSm/lTSOa9c99xNpbXVixlT9w5WpavwBudulLLwyU4M9OyOLLjOIe3H+PozhMc\n3XWc43tPYcu1AeBt9cLH3wfEGGFlZ+Tw41szeHT8/XQY0rrQHuZKzcnhs43rqRVRknZRlUxvTzKn\nQuY3EHAHBI40vb2iyvTgoJQKAmYCT4pI2gUPbwMqiUiGUqo38DtQ4xL3eBB4ECAqqhAVG9dMJ3k7\njUNJjqPgPxAV/LypU0hJ2Vl8sG4N/9m7m9KBgXzcozf9a9b2yAtrdkY2G+dvY92czRzYfIQzh8/+\n/ViJUiFUbVyZWx7tSdVGlanWqBIVa5fH2/q/P+kDW44w/pFveGvYx7T9ZQ2Pff4vIiLN+7e7Hk4R\nnlr8B2cz0vlp0FDT/50lez6S/jb4dkcFv1poA2ZhoETEvJsrZQXmAYtEZNxVXH8caC4iCZe7pnnz\n5rJlyxbXdVIrlETskDnROLdgKY0KfQvl29609hxOJz/v2cVH69eSacvj3sZNeeym1m4vap+dkc2q\nGRtYPXMDO5btITc7j7AyodRrW5vqTar8/RFetsRVvbA57A5mfjyPqa//Bx8/Hx76eAQ3392x0Lwo\njl27iq+3bmZMp64Mb9jY1LYkd52xM8naGBU++YY75KaU2ioiV73ab1pwUMZv31QgSUSevMw1ZYFz\nIiJKqZuAGRgjict2SgeH4k/sMUjqs2DbBn59USFvGCm0TbI99gyvr1jKnvg4WleoyBsdu1IjIsK0\n9i4kIuxdu59F3y1n5fT1ZGfkULZKaVr1aUa7QS2p3642XgVM533q4Bk+euBL9qzZT4uejXlq4khK\nVXDfz3gpU3ZsY8yq5dzRoBFvdupqasAS2z4k6U7wKo8K/8nU36fCqjAFh3bAamA3xlZWgJeAKAAR\n+Uop9SjwEMbOpmxglIisu9J9dXAovoydSLORtNGAMoKCf3/T2kvMyuL9dauZvm8PZQODeKl9R/rU\nqOW2d9XxpxJZMm0li6eu4PShWPyD/Og4pDU97u1Mvbaun8pyOp3M+WIRk178kaASgXy980NCwj1z\nEnjewf08sXA+N1erzue9+pl6mlzsJ5GkYYAVFfEfU4o3FQXXGhzM3K20Brjib7eITAAmmNUHregQ\nZyqS9hrkLABrcyPpmXcFU9pyOJ38uHsn4zasJctm48GmzXnsptZuSddgy7Oxfs4WFn63nK2LduB0\nCg071uWOlwbSflBL/IP8TWvbYrFwy6O9KB1VktdveZ/D24/TtKv7y2+uOXmCpxcvoHm58nzao4+5\ngeHv0882VMS0GzYwXA99QlrzOMndgKQ+B84EVNAoCPyXaYfZtsae5vXlS9mXEE/bilG80bEL1cLN\nn15JTUhjxrh5LPj2T1IT0ilVIYLbXxxI9xGdKFfNvS9Y4WVLAPy9y8md9sSd46H5s6kSFs43/W7B\n19u8lyBxZiIpD+affp6C8q5uWlvFkQ4OmseI5CEZn0DmJPCqZAz5rea8k43PyuT9tauZGb2XyKAg\nJvTqS6/qNU2fQkqJT2X6h3OZ88VCcrPyaHvrTfR+oCtNb25Y4HWE63Vs90kAgsPce/7hREoK987+\njVA/P6YMGGjqeZG/Tz/b9uaffnZfrqbiQgcHzSPEfhhJeQbs+4ziO8EvoiwBprS16MghnluyiBy7\njZHNbuKRFi1Nn0JKjktl+gezmfvlYvJy8ug0rC13vDyISnXMmSq7WiLCrM/+oGrDStRpVdNt7cZn\nZTJi9kwc4mTqgKGUDTJvrUNEkNSX808/v4Xy62JaW8WZDg6aW4kIZP+EpL0HKsB4V+fXzdQ2o0JL\n0DSyHK926ETVMHOL/SSfS+HXD+Yw98tF2HJtdL6jHXe8NIio2uVNbfdqbV+6m2O7T/L0pIfdtvCe\nkZfH/bN/41xmBj/eOsT0aTzJ+AByfkcFPY4KGGpqW8WZDg6a24gjAUl7CXJXgE97VOi7KK/rz6Nz\nPCWZuMxMmkaWu2KeozolS/HdgIHX3c7VSDqbzK/vz2be10uw5drocmd77nx5EBVqljO13Ws185N5\nlCgdSpfb27qlvTyHg4fmzyY6IZ6J/W6hSaS5/x6SOck4SR9wBwQ+YmpbxZ0ODppbSM5yIzA401HB\nr0DAXQV65zp15zam7txBxZAQqoaF0zyyPH1q1nJhj69OenIGP741k7lfLsJuc9B1eHvueHFgoQsK\nACf3n2bTH9u567Uh+PiZvzPLKcKzSxayNuYkH9zck86Vq5rWlohA5tdIxjjw7alPP7uADg6aqUSy\nkbSxkP0TeNdGhU1DWS/KkHJNHE4nO86eZWLfAVQNC+ePQweYd+gA/lYrXapUxSliehptu83O3C8X\n8/2Y6WSmZNLt7o7c8dJAylePNLXdgvjt43lYfa30e7iH6W2JCG+tWs7cg/t5tk07BtWpZ2JbNiTt\nDciebhyaDH3vhq797Co6OGimMWryPm3kRQq4HxX8FEoV/B1rRl4eR5OTyLbbsShFh0pVsDud/LJn\nF3VKljK9UMzmhdv54snvOHUwliZdGzDyo3uo2tD8hHEFcergGRZPW0n3uzsSVjrU9Pa+3LKJKTu3\nc2/jpoxsdpNp7YgzHUl5EvJWQ+BDqKAn9YjBRXRw0FxOxAGZk5CMT8EShgqbgvJtU6B7zj4Qjd3p\npEnZSKqGhTOgVh3GrV/LdwMGEuLrS+sKURxLSWb1yeMMrWfOdtizx+P4atQU1v6+mfI1Inlzzgu0\n7NO00L8YORwORg/+kIBgP+542dy1F+DvNOf9a9Xm5fadTPv3EfspJOXfYD9m7ErSi88upYOD5lLi\niDUOtOVtBN8eqNA3UZYSBbrn26tXsObkCTpVrsIPu3ZwX5NmdK1SjROpKXyyYR1PtmpDmaAgrBYv\n4rOyXPST/E9eTh7TP5zLT+/MxGKxcN/bdzBoVF98fK0ub8sMXl5ePDr+fpRSlI4qZWpbi44c4uVl\nS+gQVZn3u/U0bXpP8nYiKSNB8lBh3xb4zYd2MR0cNJeR7HlI2uuAExXyDvgPKvC7xrTcXGLSUpkx\n5HYCfXz4ff8+dp07S67dzqA69Xh3zUp+3L2TOxs0wilCWk6Oa36YfBv/2MYXT0zmzJFztB/cipEf\n3m36C6wZGnU0b87/L38cOsiTi+bTqExZPu/dDx+TDvlJ9nwjjbtXGVT4D7rus0l0cNAKTJzpRrK8\nnDlGOuTQD1Herqm7EeLri8PpZPq+PYxo3JRbatcl227nSHISDcuU5fm2HRizcjmrThzjREoK3/a/\n1SXtxsUkMOGxSayfs4WKtcoxdvGrNO1mXtW5om7OgWieXryAxmUjmdx/oCmHDI0dSV8hGR+DtRkq\n7HOUxdxzKzcyHRy0ApG8LcY0kiMWAh9FBT2MUtf/ayUiPLNkIZFBwYT4+vJgsxb0q1mbffFxRMfH\nUadUabpWqconG9ZxOCmR3jVq8W3/W0jPzaNSiYJNX/3V/oJvl/L1M9NwOpw88N5wBj7ZG6tP4Z9C\nEhG3r3/JATVkAAAgAElEQVSICF9s2chH69fSsnwFvu13q0mBIQ9JfQVyfge//qjQd1yyuUG7PB0c\ntOsiYssv3fn1/3Lk+zQpwP2EXIedl5Yuwc/bm5urVuOFpYvx8/amaWQ5Diclsez4MUoGBFI6MIj6\npcuw9NhReteoRbh/AOH+BU+9EReTwEf3f8G2P3fTuHM9Rn37EJFVyhT4vmY7sPkwUXXK4xvgi1IK\np9OJxcRMp3/Jtdt5adkSZu3fx4BadXiva3dTEumJMxlJfgRsW1BBT0Cg+05338h0cNCumTjOICmj\njGI8/oNQwS+jLEEFuqdSCl8vbzJtedzXpBn1S5dhfK++jF65jPIhIbQoX561MSd5c9Vy3uzcjQ2n\nY6hTspTL3i0v/2Utnz40EafDyeNf/Is+D3ZzywtsQTidTl4bMJbsjByCwwJp1Kk+Xe9sT0hEsOmj\niKTsLEbOn8OWM6d5qlUbHm3RypT2xH4USf43OGJRoeNQ/n1d3oZ2aYX7t18rdCRnOZJwC9gPoELH\nYQl9t8CBAYyRQ57DQY3wkpxISSHHbqN6eAS312/I1B3bqVOyNE+1bEOwry+vLF+CRSkeat6ywC9I\nmamZvHf3Z7xzxydUqluBr7Z/QL+R3Qt9YADYMHcrPv4+fLR8NL0e6EbS2RQmv/QTgKmB4UhSIoN+\n/Zld587yWc8+PHZTa3MCQ+4GJHEoSDoq/HsdGNys8P8FaIWCiCAZXxn7yr0iURGzXPrHqpTC19ub\nUoEBrI05QVxmJoAxbRTgzycb1+Hr7c3bXW7m3a49+KRHnwK3uXt1NP9u/CzLf17L3a8PZdzKMW6v\nrVAQiWeSCAwxptOa3dyQ7vd0xGF38NM7v5nW5tqYEwya/jMZeXn8PHAofWvWNqUdyZqBJN8HXqVR\n4dMLNGWpXR8dHLR/JJKHpL1o5K3x62vUXfCuXKB7zj24n6k7t7Hr3FnOL1V7T6Om5DoczDmwn6PJ\nSQAMb9CYCP//VUgLKuCCp91mZ/LLP/FM59exeFn4ePWb3PX6ELy8C3/KhYNbj3Ai+hQA7Qe34tC2\no6ybsxlvqzeRVcvQ497OnDseR+zRcy5v++c9uxjx+0zKBgUz67Y7TEmiJ+LEmf6BkYfLpyUq/D8o\n74oub0f7Z6atOSilKgLTgLIYNaQnisinF1yjgE+B3kAWMEJEtpnVJ+3aiTMFSX4UbJvydyM9VuAp\nhBeXLuZwUiKtK0TxxoplPNOmHW0qRmFzOLB6efFkyzZ8vW0zEzZtoFHZsvywaydD6tZ3yc8TdzKe\nN4eOY/+mw/S8tzMPfXIvAcHmleZ0pVcHvEdmahZpCel0u6sj7Qe15O43hvLHN39SoWY5omqXp1z1\nsiScSSLPhVXeHE4n769bzTfbttCxUmU+69mXYF9fl93/LyLZSMpzkLsI/IehQl5FqcK/S6y4MnNB\n2g48LSLblFLBwFal1BIR2XfeNb2AGvkfLYEv8/+rFQJiP44kPwiO08bZBf/+Bb7noiOHyMzLY/qQ\n2wHwtlj4afdO2lSMwurlhd3ppGJoKI+1aMWBxASWHTvCw81bcmudugVue8vinbx756fY8+y8+uso\nOgxuXeB7usv+TYfwtnozbsUYju+NYfGU5Sz7cQ1NujWgeY/GfPTAl7w5+3nCy4aRm5VHUmyySwoL\nZebl8dSiP/jz2BHuatiYVzt0vmJ69OsljjgkeSTY96KCX4SAEXpHkoeZFhxEJBaIzf88XSkVDZQH\nzg8OA4BpYswrbFBKlVBKReY/V/MgydtsbB9EocKnoXyaueS+bSpE0aD0/7aH3lq7Lh+uX4Pd6cSi\n1N8vPMG+vnSoVJk2FaMK/GIkIvxn7O9MfvlnKtWrwOsznimUKbWvxGF3cmJvDJmpmVSuV5FOw9qy\neuZGDm4+Qs/7u3D26Dk+uO9zYo+co3Hn+jTpUvD8Umcz0vnX3N+JTojn9Y6duaeROaU2xRZt7EiS\nNFSJL3XltkLiqoKDUsoPeBhoBwiwBvhSRK4qV4FSqjLQBNh4wUPlgZjzvj6V/z0dHDxIsmcZB468\nKqDCvnHZaWcwXvTPn5I4lpJMRl7e3wEgLTeHWfv3UadkaW4qX6HAgcGWZ+OTkRNZPGUFnYa1ZdQ3\nI/EPNK92sStt+3MXEeXCKFO5NPXa1OKmXk1Y/ss6+v77Zmo2q0bimWTWzNqIsihGjhtBclwqaQlp\nVKpb8Dn63XHneHDu72Tm5fFNv1tMq8UgOcuR1FGggoyzMtaCjxA117jav7xpQD1gPDABqAN8fzVP\nVEoFATOBJ0Uk7cKHL/EUufAbSqkHlVJblFJb4uPjr7LL2rUyFgM/MfLW+DRDRfzq0sDw/20Z/5vP\nZWZQI8IoG/n7/mi2x8bSrmIlbipf8CmRtMR0XujxFounrOCu14bw0o9PFJnA8NnD3/DlU1OY/uFc\nXur9NslxqVRvWpUzh2NZN3szAK37NSfhVCIrf10PQFjpUJcEhsVHDjFsxi94WRS/DhlmSmAQESRz\nKpLyEHhVQUXM0IGhkLnaaaVaItLovK+XK6V2/tOTlLGaNBP4UUQutb/uFHD+b3MF4MyFF4nIRGAi\nQPPmzS8KHlrBieQiqS9AznzwH4wKecPU9AR/zScHWq3YHU5Gr1zG1jOn+brvLS6px3DqUCyv9H2X\nuBPxvPD943S9s32B7+kux/acJObAab7ZPQ6AD+/7gh/GTKfnfV1IS0xn25+7SE/OoMeIzvgG+BJW\nOsQl7YoIE7dt5v21q2lUJpKv+w2gVECgS+79/+3YkfS3IOsn8O1mrGdZCn7CXXOtqx05bFdKtfrr\nC6VUS2DtlZ6QvxNpEhAtIuMuc9kc4G5laAWk6vUG9xNHIpJ0N+TMRwU9jQp52215a/bFx/Pdjq0E\n+fgw5/a7XBIYdq3ax+OtXyIjOYP3l75epAIDQERkGIElAjm49QgAT096iMy0LLb9uZub7+5Iyz5N\nmfXZHzzbbTS+/j607FPw9aBcu50Xli5m7NrV9KlRi58GDTEnMDjTjfWFrJ8g8F+oEhN0YCikrjhy\nUErtxpjmsWK8iJ/M/7oS/7+wfCltgbuA3UqpHfnfewmIAhCRr4A/MLaxHsbYynrv9f0Y2vUS2yHj\nYJsjAVViPMrP/BKS5+tSpSo1IiIYUKuOS+63/Je1fDBiAmWrluHteS8SWbXw50a6kLIowsuU4PSh\ns1SsXR7/QD/uf+dOnu/+JlUbVaJFzybUuqk6ORk5LkkffjI1hUcXzGNP3Dkeu6kVT7RsY0odBqM4\nz4NgP268AQkY4vI2NNf5p2ml6z4CKyJruPSawvnXCPDI9bahFYzkrkFSHgflj4r4EWU1p4Jaem7u\nZffFN40sR1MXHKYSEWZ8NJeJz31Pgw51GD3rOYLDCp7Ww10cDgde+fUPgsOCaN6jMQsmLyWiXBjV\nGlemVIUIBjzSkwObDtOiR2NCwoMJCS/4KOuPQwd5YekiLErxdZ8B3FyteoHveSmSt91YXxA7Kmwy\nyrfVPz9J86grTiuJyIkrfbirk5rrSdbPSPK/jIyqEdNNCQxOEd5bu4r+v/xASk62y+9/vu9HT2fi\nc9/TcWhr3lv4SpEIDNkZ2Ux66ScyUzPx8vLC4XD8/VibAS1o2KEeS6au4M/vV5GdmcO2P3cRGOqa\nKZjMvDye/3MRjy6YS/WwCObdfpcpgeHvheek4caOpIhfdWAoInRW1huMiANJHwtZU8C3Iyr0Y5ck\nzrtQls3GqMV/sPjIYe5s0IggH9efqP3LL+/N4vsx0+kxojOjvh1ZJJLmJZxO5JV+75GWmE7MgdO8\nMfNZvLy8cDqdKKVQSjHk6X6snrmBnSv28krfdylVMYJbH+9d4La3x55h1OIFnExN4aHmN/FkyzZY\nTajaJs4kJPUlyF0Gvp1Roe+hLGEub0czhzo/r01R0Lx5c9myZYunu1EkiTMTSX3a+GMNuAcV/AJK\nuf5FIS4zg3/N/Z09ced4uX0n7m3c1LTTrnO/WsxnD39Dlzva8dzUR/+eminscrJymT1hIf0f6cHY\nu8dTtnJpRn50D8D/BYi/xB47V+DaEnanky82b2T8pvWUDQrmo+69XLJl+FIkd42x+82ZjAp+DgLu\n1ieePUwptVVEml/19To43BjEcdbYJWI/YNRfCLzLlHai4+N4YO4sUnNz+bRHH7pWNa++7+aF23ml\n33u06NmY0bOeKxKJ885ny7Nh9bFy5shZ3h3+Gb3u60Lvf3X7+/G96w6gFNRtXavAbZ1ISWHU4j/Y\nfjaWAbXqMLpTV0JMyY+Ui6R/CFlTwbu6sU1Vn18oFK41OOhppRuA2PbmpyfIRIV9jfLtaEo7q08e\n5+H5cwj28eXXwcOoW6q0Ke0AHN11gjeHjqNKgyhe/vnJIhcYgL9Lj5arVpb737mDz5+YTJ1WNajS\noBK7V0cTe/Qcrftf9d/yJYkIM6L3MmblMrwsFj7t2Yd+ZqXZtu1HUp8B+0EIuAsV/CxGcgWtKNLB\noZiTnCXGH6wKQ4X/grIW/F3opfx59DCP/jGPauHhTO4/kDJB5i0Ipyak8fotYwkI8eetuS/gH1Q0\nsqpeSePO9bn7jdt4+/ZP8PL2otcDXbnl0V4FumdydjYvLVvCoiOHaFW+Ih9270m5YNccmDufiBOy\nphojBkuokXLFpDcgmvvo4FBMiQhkTUbS3wdrAyOhmVfB98Rfyh+HDvDkoj+oV6o0UwYMItTPvHeL\nDruDt4Z9TGJsCuNWjqZk+QjT2nIlh91BWmI6YWVKXPaaiMgSxB49x5Cn+xc4MKw+eZxnlywkOTub\nF9p24IGmzc05u+A4a6wt5K0D366o0LdRlnCXt6O5nw4OxZCIDUkbDdm/gl8vVOhY04b3Cw8f4omF\n82lcNpLJ/Qeakuf/fN++8CM7lu3hmckPU/umGqa25Sq7V0cz4bFJBIT4M27lmEsuzDrsDmZ+Mp9n\nv3uETre1ve62cuw23l+3hik7tlE9LJxJ/W6lXmlzDgJKziIk9VUgFxUyBvxv04vOxYgODsWMONOM\ng2156yBwJCroSZQyZ2vnn0cP8/jCeTQqU5bvBgwqcIW2f7J50Q5mjJtLv4d60GNEZ1PbcoW4mAQm\nv/wTS39YTemoktz1+uVPBHt5e/HiD4/jbb3+P8nohHieWjifg0mJ3NOoCc+3bY+ft+uL5Ygzw8iN\nlP0beNdHlfgI5V3F5e1onqWDQzEijnNI8gNgP4oKeQ8VMNC0tpYfP8ojf8ylbqnSTHZDYMjOzOHT\nkROpWLs8Iz+629S2CiotKZ3/vPc7s8YvAOD2F2/ljpcH4Rdw5VHV9QYGpwiTt2/lw3VrCPXz47v+\nA+lY2ZwXa8nbbqxhOU5D4EOooEd1tbZiSgeHYkLsR5CkB0BSUGETUb7XPzXxT1afOM5D8+dQK6Ik\n024ZZMqWyAv9MGYG507EM27lGHz83JMU8FplpmXx+/gFzPhoLpmpWXS7uwP3vHEbZSqZs9YDEJue\nzjNLFrL+1ElurlqNd7p0JyLA9YnsROxIxheQ+SV4RaLCf0D5FGwnlVa46eBQDIj9pJGeAFDh36Os\nrqm3fCnbYs/w7/mzqRYWzrRbBxPia/5WxdOHY5n58Tx6jOhMg/auSdDnSpmpmcz6bAG/fTKP9ORM\nWvVtxn1v306VBpVMa1NEmLV/H2NWLcfudPJu1+4MrVvflDl/sZ8wRgu2neA3ABXyGspS8LxOWuGm\ng0MRJ44EJPleEAcq4heUtzkVuwCOJCXywNxZlAkMYuotgynh554tpN+Pno631Yv73rndLe1drYyU\nTGZ99ge/fTKfjJRMWvdvzvBXB1OzmXkH/wBiUlN5edkS1sScoFlkOT64uSeVS7g+LYWIQPZMY30B\nbyPVin8fl7ejFU46OBRh4swwkuc5E1Bh00wNDPGZmYyY/RteysLUWwZR0oSpi0uJPXqOZT+tYeiz\n/QkvWzjy8qQnZ/D7ZwuY+ck8MlOzaDOgBcNfHUyNpub9+4NRc+Hb7Vv5fPMGvJRidKeu3NmgkTlb\nVJ3Jxk6k3MXg0xIV+j7KK9Ll7WiFlw4ORZRIHpLyGNj3o8K+RPk0+ucnXadcu51/z5tNUnYWvwwe\nRlTo5ffqu9rmhTsQkf9LK+EpibHJzBw3l3lfLyE7I4e2t7Rg+KtDqN7E/J06K44fY/TKZZxITaF7\nteq81qGzKQfa4FJ5ke4zbcebVnjp4FAEiTiNbJd5a1Eh76J8O5nYlvDysiXsOBfLl33608CkPfOX\ns2dtNCXLh3usaI+IsGvVPhZNWc6Kn9fisDvoNKwtw56/xdQ1hb/EpKby1urlLDl6hColwpgyYBAd\nKlU2pS0jL9JHRsZer2qoiIk6L9INTAeHIkgyPoScOaigp1ABg0xt67sd2/ht/z6eaNmaHtXcf+jM\n2+qNPc/u9nbjYhJYMnUli6YsJ/boOQKC/el5XxcGP92PctXKmt5+jt3G11s389WWzXhZFM+1ac99\nTZrhY1LW2f/Pi3QnKvh5nRfpBqeDQxEjmVMg81sIuAMCR5ra1tqYE7y7ZiXdq1bnsZtam9rW5TTp\n2oAl01ayaMoKet5r7sG3vJw81s3ezMLvlrNtyS5EhEad6nH3G0NpN7DlP55TcAURYemxI7y5agUx\naan0rVGLF9t1dElt7Uu3p/MiaZdmWnBQSk3GKDMaJyIX7a1USnUCZgPH8r/1m4iMMas/xYFkz0PS\n3wHf7qjgV01NVXAkKZFH/phLtbBwPuzey5RFz6vReVhb5ny+kI/u/4JNC7bxyKf3ERHpuoVpEeHA\n5sMsnrKC5b+sJSMlk9JRJbnzlUF0H9GpwDUUrsXxlGTGrFrOiuPHqBEewQ+3DqFNxSjT2tN5kbQr\nMXPkMAWYAEy7wjWrReS661TfSCR3PZL6PFhbGOkKTCjS85ek7CzunzMLq8WLb/vfavrp5yvxtnoz\nbtUYpn84lx/enMG2Jbu4/9076fNgt+uu+Jadkc2WRTvZungn25buJvboOXz8rLQb2JIeIzrTuEt9\nt1aTy7bZ+HLLJiZu3YyPlxcvtevIPY2amFKd7S+SszA/L1KezoukXZJpwUFEVimlKpt1/xuJ2PYh\nKQ+Dd2VU2BcoZd70ht3p5LEF8zmbmcHPA4dSISTUtLaultXHyh0vDaTDkNZ8+tBEPnv4G5b+uIqn\nvv43lepWvOJz05LSObrzBEd2HOfITuPj5L5T2G0OAkL8adSpHrc9N4COQ9sQVCLQTT+RQURYdOQw\nb61ezpn0dAbUqsOL7TpQOtC8dOfiTEbS3oacOTovknZFnl5zaK2U2gmcAZ4Rkb0e7k+hI/aTRr4k\nFYoKm4SymPti/cG61aw/dZIPbu5Jk8hyprZ1rSrUiOT9Ja+xZNpKvnp6KiObPEuPe7tQp1UNKter\niH+wPyf2neJofhA4suM4cScT/n5+eGQY1RpV4qaeTWjeozH129X2WJGgo8lJjF65jNUnT1AroiS/\nDOptWslOyD/QljPXCAySDoGPoIIe1nmRtMsytUxo/shh3mXWHEIAp4hkKKV6A5+KyCW3wyilHgQe\nBIiKimp24sQJ0/pcmIjjjJEWw5mBivgZ5W3uydu1MSe4a9YMhjdoxJjOnj9XcCUp8alMfPZ7Vs/Y\nQE5W7v89ZrEoytcsR/UmlanWqArVGlemWqNKV6yl4C5ZNhsTNm1g0vYt+Hp7M6pVW4Y3bIy3idNY\nYj+MpI2BvA1gbYQKecu0ok9a4VWoakhfKThc4trjQHMRSbjSdTdKDWlxnM0PDMmo8CkoawNT28u1\n2+n90zScIiy88x58vT09qLw6DoeD04fOcurAGbLSs6lQM5LK9aPcsrPoWogI8w4d4L01K4nNyGBQ\nnXo817Y9pQLMm8oSZwaSMQGypoEKQAU/Bf7DTF2v0gqvIlNDWilVFjgnIqKUugmwAIme6k9hIo5z\nSNLd4ExEhZkfGAAmbd/KsZRkJvcfWGQCA4CXlxdRtcsTVbu8p7tyWVvOnObdNSvZfjaWeqVK81mv\nvjSLNK+/xhTSPCR9LDjjwH8wKvgZvRNJuyZmbmX9GegElFRKnQJeB6wAIvIVMBh4SCllB7KBYWLm\nMKaIEEcCknQPOOONNQYT02L85XRaGhM2b6BHtRp0MqkOwI0oOiGeTzeuY/GRw5QODOTdrt0ZXKce\nXmZOIdkOGlNItk35C86fu+V3SCt+zNytdMUUmiIyAWOrq5ZPnElI8j3gjEWFfYvyaeqWdsesWoYC\nXu3QyS3tFXd7484xfvMGFh85TJCPD6NateW+Js0IsJq3+CvOdCRjPGR9Dyo4f3vqED2FpF23ojN/\nUMyJM90o1mM/aRTr8WnhlnaXHTvKkqNHeK5Ne9MSud0odsedY/zG9fx57AjBPr48dlMr7mvcjFA/\n89JQGFNIs5H098GZCP5DUcGjUJbCkcFWK7p0cCgERHKR5H8bGVZLfI7ydU+qily7ndErl1E9LJz7\nmjRzS5vF0c5zZxm/cT3Ljh8lxNeXJ1u2YUTjJqYXQhJbdP4U0lZjF1LY125Zn9JuDDo4eJiIIKmv\ngG2LUUzFz9z8QedbfPQwMWmpTO4/0LSEbsXZzrOxfLppPSuOHyPU149Rrdpyd6MmppdNFWcakvEJ\nZP1knH8JeRv8B+m02ppL6eDgaVmTIWc2Kuhxt1fZmrlvL+WCg01LAV1cbY89w2eb1rPyxHHC/Px4\npnU77mrYmGCzg4I4IXsWkvEBOFMg4HZU0BMoi+fPb2jFjw4OHiS5K4y5Yt+eEPiIW9tOy81hTcwJ\n/t2shceS6hU1W86c5rON61kTc4IwPz+ea9Oe4Q0buyX3lNj2ImmjwbYDrE1QYZN1rQXNVDo4eIjY\njyApo8C7Nir0PbcnPdt0+hROETpEVXZru0XRptOnGL9pPWtjThLh788LbTtwZ4NGBLojKDhTkPSP\nIfsXsISjQt8Dv1v0FJJmOh0cPEAkB0l5HJSPUeLT4p56zOdbfyoGXy9vGpfVdYEvZ+OpGD7btJ71\np2KI8A/gxXYduLNBY1O3pP7FmEKablRmkzQIuMuYerToHWWae+jg4AGS9i7YDxmH3Lw8k9xu46kY\nmkaWK1Knod1BRNiQHxQ2nj5FqYBAXmnfidvrN8TfDUEBQGy78qeQdoO1GSrkdZS1tlva1rS/6FcG\nN5PcdZD9MwTcj/Jt75E+pObkEJ0QzxMt23ik/cLI4XSy7NhRvt2+hc1nTlM6MJDXOnRmWP0G+Hm7\nKSg4k/KnkH4FS0lU6Afg11/XWdA8QgcHN5PMr8BS2kiC5iEbTscgQOuKV66FcCOIz8rk1717+HnP\nTs6kpxMZFMQbHbtwW70GbhtViTgg+1cjMEg6BNyTP4VkXl0HTfsnOji4kdh2Qd4GVPALKOW56mpr\nT54g0GqlcZkbc73B5nCw/PhRZuzby4oTx7A7nbSpGMUr7TvTrWo1U9NnX0jydhgH2ex7wKclKvg1\nlPWSmes1za10cHAjyZwKKgj8h3quDyIsP36M1hWiTC1DWRgdSExgxr49/L5/H4nZ2ZQKCOS+xk0Z\nUrc+1cIj3NoXcSQgGR9B9kxjJBk6Dvz66CkkrdDQwcFNxHEOchZAwHCPThccTErkdHoa9zZ2T1I/\nT8uy2Zh7IJpf9u5m57mzWC0WulSpxpC69elQqbJbRwlg7FQjcwqS+TVILgQ+gAp8WE8haYWODg5u\nIlm/AA5UwHCP9sNqsRDk48OH69fgFOHexk1NTSHtKUeTk/hh905m7ttLel4uNcMjeKV9JwbUqkNE\ngPu3DovYIXsOkvEpOGPBtysq+Dldv1krtHRwcAORXGOHkm9nlHeUR/tSNSycRXeO4NXlf/LOmpXM\nP3SAsd16UDOipEf75Qp2p5M/jx7hh907WBdzEqvFQs/qNRnesBHNI8t7ZMpGxAbZs5HML8ERY9RY\nCH0f5dvS7X3RtGuhg4M75MwHZxIq4C5P9wSAyOBgvul3C3MP7mfMyuX0+/l7Hm7RkoeatyySCfgO\nJiYwa/8+ft8fzbnMDCKDgnm6dTuG1qtvahnOKxHJg+zfjd1pjlP5hXdeNt4g6HUFrQgwtYa0GYpa\nDWkRQRJvBfJQEfML3QtDUnYWY1YtZ86B/dSMKMnYrt1pVAROTZ9JT2P+oQPM3h/NvoR4vJSiQ6Uq\n3F6/AZ0rV/XYVJkRFH5DMr4G52mwNkAFPgq+nQrd/3vtxnKtNaR1cDCZ5G1Fkm5HhYxGBVyxOJ5H\nLT12hFeX/UlcVib3Nm7KU63auiVNxLU4nZ7G0qNHmH/oAJvPnAagYZmy3Fq7Dn1q1KakB9YS/mIE\nhRn5QSHWqK8Q9Cj4dNBBQSsUrjU4mFlDejLQF4gTkfqXeFwBnwK9gSxghIhsM6s/niJZ00CFgN8A\nT3flirpWqcZNwyswdt1qJm3fypIjh3m76820rVjJI/0REc6kp7M/IZ6tsWdYfvwoBxITAKgRHsGo\nVm3pW7MWlUt4tuKZSC5kTTd2HznPGRlTQ98Cn3Y6KGhFmmkjB6VUByADmHaZ4NAbeAwjOLQEPhWR\nf1ylK0ojB3GcReI7Q8A9WEJe8HR3rtrGUzG8uGwJx1OSGVK3Pi+372hqVbMsm41DiQnsT4gnOiGe\n/QkJ7E+MJy03FwBvi4UW5crTuXJVOleu4vYzCZdiBIX/IJkTwRln5EAKehR82uigoBVKhWbkICKr\nlFKVr3DJAIzAIcAGpVQJpVSkiMSa1Sd3k6wfAfH49tVr1bJCRf644y4+2bieSdu2sPLEMcZ06kr3\nagU7ufvXaCA6IY79CQn/be/eg+OszjuOfx+tdiVZkuWL5EsAc8fCIRBAGAOFuISkYKjBJaQOdIDW\nGY8DDtA2MzVNAi0hCSTTMAkhYWygJTfDkJTEBnMLCdPMNDbYlDsBDG2KsfH9gizJsrRP/ziv6aJd\nWSu0775a+feZ0WgvR6ufjrT76Lzv2XOiQrCZ/9mxnX3/otSn07Q2t3DBMa20jm/m2JYWpo5vKcue\nCYuh/l0AAA9MSURBVMVw74qKwpKoKLRhTd+CzGkqCjKiJDlb6SDg7Zzr66Lb8oqDmc0H5gNMmZLs\nVNBi7XsRoeZsrPrgpOMMWm11mkVnnMUFR09l0a8fY8HDy5h11DHcOPPsomYA7enp4fVtW3ll08aC\nowGAKaObaG1pYfbUVlqbWzi2uYWDRzcNy82H3Duh4z58912Q3Qzp6VjTv2hKqoxYSRaHQq8ABY9x\nuftiYDGEw0pxhiqZzuXgO7BRlyedZEiOmzCRB//yMhY/u5rbV4UNb7561kzmtE57/z/l3myWN7Zt\n5fmN7/L8uxt4cdNGXt+6hb3ZLACj0mlaxzdz/tFTmdYygdbm5mE1Gtgfz3ZA51J8992Q3QKZGVjD\nbVhmetLRRGKVZHFYB+QuC3owsD6hLCXl7uFEdPVUyFT+f5bpVIqrTzmVc488ikVPPs6XnniUJc+G\n8z47urrY3tlJd7YXgNE1NXxswkT+5sSTOa5lItMmTODQpjHDcjSwP6Eo/CwaKWwLh40avotlTkk6\nmkhZJFkclgELzew+wgnpnSPmfEP309DzGjb65hF1HPrIceO5/zNz+ckLz/Ho2jdorMlw/MRJjK2r\nY+q4Zk6YNInDx4yt6J/Zs7uh46dhpODbIXMG1rAQy5ycdDSRsopzKutSYCbQbGbrgBuBNIC73wms\nIMxUWkuYyvrXcWUpN++4F2wM1M1OOkrJVZlx+QkncvkJJyYdpaQ8255TFHZA5syoKIysn1OkWHHO\nVtrvO76iWUpXx/X9k+I9b8OeJ6F+PmbxTf+U0ghF4cf47n/NKQpfxDIfTzqaSKK0tlKJhemrVdio\ny5KOIvsRisKPoqKwMyxvUX81ljkh6Wgiw4KKQwl5dkfY/7f2z7DUpKTjSAGe3RmNFP4NfFeYatxw\nFZY+PuloIsOKikMJefud4Lux+quSjiJ9eO+mMErovA98d9hPoWEhlv5o0tFEhiUVhxLx3g3Q8ROo\nm4Olj0k6jkR870vhUF/nMqAXamdh9fOxdGvS0USGNRWHEvH22wHHGq5JOsoBz70LulbgHT+DvS+A\n1UHdxVj95xPfbEmkUqg4lID3vgOdD4b9oVMfSTrOAct7/hfvWAqdvwgzj1JHYI1fCaO5qsak44lU\nFBWHUtj7ItCL1c1JOskBx70X9jwVRgndvwOqoeacMFssM72i35AnkiQVh1Lo+WP4rBlKZeO9W6Dz\nAbzjfsiuh6oJWMMXoe6zWGpi0vFEKp6KQylUhxPQvuM6GPMDrKoh4UAjk7vD3tVhlND1OLA3rHk0\n6vow+8j05yxSKno2lYDV/ik0fRvfeT2+7a9g7A+x1PDfh7lSeLYdupaHotDzGlgjjLoMGzUXqz4i\n6XgiI5KKQ4lY3YVQ1YTvuBbfMgsa/yEc4rBkNrqvdO690P003rUcuh4J702onoaNvhlqL8Cqktsv\nWuRAoOJQQlYzE8Yvx3d9Bd91A3Q9DKNvxqqT2Ye50rg79LyCdz4EXQ+FPZmtPrzjvO5zkD5eJ5hF\nykTFocSsegqMvTecLH3vFnzLn0PjdTDqCsxSSccblrznzaggrIDe/ybMODoTq10EtWdjVpd0RJED\njopDDMwMRn0Was7Cd/0T/t4t4YVv9Dex9ND2YR4pvGddeKNa10PQ8wfAIHMqVj8Paj+FVY1NOqLI\nAU3FIUaWmgRjfghdD+O7voZvvQgavhAt5z38t8gsNe/dBF2PhoKw97lwY/rE8Ea12vOwVEuyAUXk\nfSoOMTMzqLsAak7Hd92Mt38Puh6Dpm9g6Y8lHS92nt0BXY+HgtD9NJCF6las4e/DOkfVhwz4GCJS\nfioOZWJV47Ax38G7zsd33YhvvQSvnxc2lhlhmwJ5dht0PYF3PQ7dK4G9kDoM6r+A1Z2PVR+VdEQR\nGUCsxcHMzgW+C6SAu9z9lj73Xwl8G3gnuun77n5XnJmSZrWfhMwp4TzE7iV41xPQ9PWK3rjevRv2\nPo/v+T10/2d0yCgLqSlQfwVWe36YhqqZRiIVI849pFPAHcCngHXAM2a2zN1f6dP0fndfGFeO4ciq\nRmNN38BrLwjTXrddho+6FGv4UkW8u9q9F3pege5VoSDsXQPeAVRB+rgwQqj9dDh8pIIgUpHiHDlM\nB9a6+1sAZnYfcCHQtzgcsKzmdBj/EN5+W9iysuspaPoaVnNm0tE+wD0LPa+HYtC9Mpw78PfCnakj\noe4iLHN6mG1U1ZRsWBEpiTiLw0HA2znX1wGnFmh3sZmdBbwO/K27v12gzYhlVaOw0V/Ga8/Dd/4j\nvn0eXvcXWOP1ib3Qujv0vhWNDFZC9yrw7eHO1JQwsygzI6x6mpqQSEYRiVecxaHQ8QTvc305sNTd\n95jZAuBe4Oy8BzKbD8wHmDJlZG7WYpmToPlXePsd4VzEnt/B6BvD4ZmYuWejYrAa734mFIPspnBn\n1WSo+UQoBjWnYqmDYs8jIsmLszisA3LnKR4MrM9t4O5bc64uAW4t9EDuvhhYDNDW1ta3wIwYZjVY\n49/hteeGUcSOhXjteVjjV7FU85Ae270TejdA77vhI/tu2Nq0d33Yj8J3hIZVzeHwUGYGZGZAaorO\nG4gcgOIsDs8AR5vZ4YTZSHOBS3MbmNlkd98QXZ0NvBpjnoph6Wkw/gHYfTfefju+5ym8bg426kqs\n+rC89h944c+GF3/vfRey+4rBxv9/8c9VNS6MDGrPwdInQ+ZkSB2qYiAi8RUHd+8xs4XAY4SprPe4\n+8tmdhOw2t2XAdeY2WygB9gGXBlXnkpjloaGBVD7aXz3Euh4AO9YimdmgGUg+x74LujdDL6zwAOM\nhdRkSB0EmZOxqknR9clQNRFSkzCrKf8PJiIVwdwr6yhNW1ubr169OukYZee9m8N+BnseB2qgqiHs\na1DVEpbpSE2C9wvAxBH3xjoRGRozW+PubcW21zukK4SlWrDGa6Hx2qSjiMgBQDvRiIhIHhUHERHJ\no+IgIiJ5VBxERCSPioOIiORRcRARkTwqDiIikkfFQURE8qg4iIhIHhUHERHJo+IgIiJ5VBxERCSP\nioOIiORRcRARkTwqDiIikkfFQURE8qg4iIhInliLg5mda2avmdlaM1tU4P4aM7s/un+VmR0WZx4R\nESlObMXBzFLAHcB5wDTgc2Y2rU+zecB2dz8KuA24Na48IiJSvDhHDtOBte7+lrt3A/cBF/ZpcyFw\nb3T558AnzcxizCQiIkWIszgcBLydc31ddFvBNu7eA+wExseYSUREihBncSg0AvAP0QYzm29mq81s\n9ebNm0sSTkRE+hdncVgHHJJz/WBgfX9tzKwaaAK29X0gd1/s7m3u3tbS0hJTXBER2ac6xsd+Bjja\nzA4H3gHmApf2abMMuAL4PfAZ4DfunjdyyLVmzZotZvbH6GozsKWkqeNRCTmVsTSUsTSUsXT25Tx0\nMF8UW3Fw9x4zWwg8BqSAe9z9ZTO7CVjt7suAu4Efm9lawohhbhGP+/7QwcxWu3tbPD9B6VRCTmUs\nDWUsDWUsnQ+bM86RA+6+AljR57Ybci53AZfEmUFERAZP75AWEZE8lV4cFicdoEiVkFMZS0MZS0MZ\nS+dD5bQBzv+KiMgBqNJHDiIiEoOKKg5mdomZvWxmWTPr9+z7QAv+xZxxnJk9YWZvRJ/H9tOu18ye\niz6WlSlbRSyEWETOK81sc07/fb7M+e4xs01m9lI/95uZfS/K/4KZnVTOfEVmnGlmO3P68IZC7WLO\neIiZ/dbMXo2e19cWaJNoXxaZMdG+NLNaM3vazJ6PMv5zgTaDf267e8V8AMcCU4GngLZ+2qSAN4Ej\ngAzwPDCtjBm/BSyKLi8Cbu2nXXuZ+27AfgGuAu6MLs8F7k/gd1xMziuB7yfxNxh9/7OAk4CX+rl/\nFvAIYQWAGcCqYZhxJvBQUn0YZZgMnBRdbgReL/C7TrQvi8yYaF9GfdMQXU4Dq4AZfdoM+rldUSMH\nd3/V3V8boFkxC/7FKXcxwXuBi8r4vfenUhZCTPr3NyB3/w8KvJM/x4XAjzxYCYwxs8nlSRcUkTFx\n7r7B3Z+NLr8HvEr++muJ9mWRGRMV9U17dDUdffQ9mTzo53ZFFYciFbPgX5wmuvsGCH9YwIR+2tVG\n60WtNLNyFJBKWQix2N/fxdFhhp+b2SEF7k9S0n+DxTotOhTxiJl9NMkg0WGOEwn/9eYaNn25n4yQ\ncF+aWcrMngM2AU+4e7/9WOxzO9Y3wX0YZvZrYFKBu77s7r8q5iEK3FbSKVn7yziIh5ni7uvN7Ajg\nN2b2oru/WZqEBZVsIcSYFZNhObDU3feY2QLCf0Rnx56seMOhHwfyLHCou7eb2Szgl8DRSQQxswbg\nF8B17r6r790FvqTsfTlAxsT70t17gY+b2RjgQTM7zt1zzzcNuh+HXXFw93OG+BDFLPg3JPvLaGYb\nzWyyu2+Ihr+b+nmM9dHnt8zsKcJ/JHEWh8EshLjO9rMQYswGzOnuW3OuLmH4bRIV+9/gUOW+wLn7\nCjP7gZk1u3tZ1woyszThRfen7v7vBZok3pcDZRwufRl9/x3R68m5QG5xGPRzeyQeVnp/wT8zyxBO\nvpRlNlBk32KCRJ/zRjtmNtbMaqLLzcAZwCsx5yqmX3KzF7UQYgwGzNnnmPNswnHg4WQZcHk002YG\nsHPfocbhwswm7TvmbGbTCa8FW/f/VSXPYIT11V519+/00yzRviwmY9J9aWYt0YgBM6sDzgH+0KfZ\n4J/bSZ1h/5Bn5ecQKuAeYCPwWHT7R4AVOe1mEWYVvEk4HFXOjOOBJ4E3os/jotvbgLuiy6cDLxJm\n4rwIzCtTtrx+AW4CZkeXa4EHgLXA08ARCf2eB8r5TeDlqP9+C7SWOd9SYAOwN/p7nAcsABZE9xth\ni9w3o99vwZl1CWdcmNOHK4HTE8j4J4RDGy8Az0Ufs4ZTXxaZMdG+BI4H/ivK+BJwQ3T7kJ7beoe0\niIjkGYmHlUREZIhUHEREJI+Kg4iI5FFxEBGRPCoOIiKSR8VBRETyqDiIiEgeFQeREjCzX5rZmmg9\n/flJ5xEZKr0JTqQEzGycu2+Lli94BviEf3ANKJGKMuwW3hOpUNeY2Zzo8iGEVTlVHKRiqTiIDJGZ\nzSQsdnaau3dEq2LWJhpKZIh0zkFk6JqA7VFhaCVsZylS0VQcRIbuUaDazF4AvkZYmVOkoumEtIiI\n5NHIQURE8qg4iIhIHhUHERHJo+IgIiJ5VBxERCSPioOIiORRcRARkTwqDiIikuf/AFrfh83LGlyA\nAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m.draw_mncontour('a','b',nsigma=3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"То же в виде цветов."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAD8CAYAAACihcXDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuMJOtZ3p+3+jazO3s5uzvn7J7jsz5Gx46CnGAnIy5C\nQo4hysGxbAVwOERBGDlagWxxCSiKE8mAJaQgJMDR4aINWMYE2UbGwIGYWCCwDBI2rB3bsTngHNnY\nXu9t9jKzOzszPd1Vb/6o7+vvqamq6ZqZ7unq7ve3avW3VTXV1T3TXz/9vJdPVBWGYRjGZIkmfQGG\nYRiGTcaGYRi1wCZjwzCMGmCTsWEYRg2wydgwDKMG2GRsGIZRA2wyNgzDqAGVJ2MRaYjI/xGRPyrY\n1xGRD4jIiyLyCRF5apQXaRiGMevsRxn/KIAXSva9BcA9VX0awC8C+LnDXphhGMY80axykIi8BMC/\nBvCzAP5jwSFvBPDTbvxBAM+JiOge5X3nzp3Tp556al8XaxjGfPLJT37ytqouH+Yc/+pfHNc7d+Nq\nj/fZ7kdU9ZnDPN5+qTQZA/glAP8JwImS/U8A+CoAqGpfRNYBnAVwu+yETz31FK5cubKPSzUMY14R\nkS8f9hx37sb4649crHRs48L/O3fYx9svQ20KEXk9gFuq+sm9DivYllPFInJJRK6IyJXV1dV9XKZh\nGMbhUABJxX+ToIpn/K0A3iAi/wDg/QBeKyL/c9cxVwE8CQAi0gRwCsDd3SdS1cuquqKqK8vLh/rG\nYRiGsS8Uip7GlW6TYOhkrKpvV9WXqOpTAJ4F8Geq+u93HfY8gB9w4+9xx1g7OMMwakWdlXFVzziH\niLwTwBVVfR7AbwD4LRF5EakifnZE12cYhjESFIq4xhpxX5Oxqn4UwEfd+B20fRvAm0Z5YYZhGKMm\nyYeyasOBlbFhGMY0oQBim4wNwzAmjyljwzBqS3LjFYNxT/sAgJZkp4bo/BeO9JrGgQLozYpnbBiG\nMa0o1GwKwzAmR//G04Oxz6HtOgUMACejxaHnYPU8tSpZgbi+c7FNxoYx79xJHg7GLVd6wN5qR1pH\nfk3jIK3Aqy82GRvGFMJKtas9AMhUjvVo2jkVLYzlsadPIQviws4N9cAmY8OYcW7Hm4NxzyneHn1d\n5zLcBdn7e/w0q+Q0gGeTsWEY+6B7/esG4z5SxdvToHar+LzjZtp85DTP2CZjwzBGCPu8Pl1rh9K2\nuqQAd0j79jQdN8gTXhBujOO3790sZ1oVcmLK2DAMZuv6ywCU+7xL0j7yazoM06CSTRkbhrFv7iXb\ng7H3ebdJ1fUy4wYAYAcN2hbU8LbmVexx2Sl5ZP/hoAXbipkWlawQxDVeg9kmY8Mw5gazKQxjTuFA\n3IYGNXpsStTkQairZaEQ7Ghj+IETwiZjw5gA95IugP0F3Xo0kfCk4m2IXsamCG/tmM67EPVy18I+\nahj36YjZsCzSog+zKQxj5mFFuOE8347M91usbgUiFsAzjDnlVrI1GG8mYSLYHhJ0Y2W77cY7tI1V\ncm+wP2zrUtCuI3k1vB+BGJMaDksSDV8nrm4qWVUQqyljw5hJHl5/6WC8KJ0JXkm9qYuPnEyzMhaR\nBQAfA9Bxx39QVX9q1zFvBvDzAL7mNj2nqr8+2ks1jHpzK94YjNedgLyvYYLeTkjZOkXMaWeshncK\nlC+r4e2Ef66R+/mWkOfLYrCoU86BxCKfaDp85DSAV1/9WeXKugBeq6obItIC8Jci8seq+vFdx31A\nVd82+ks0jHrAmRH3NQ3AHZtzT/ggTEolT30AT1UVgP/Ib7lbjbuCGsbRcTMO6WprpFYfJGmntIca\nKumyajbv82Z94iLl28htA4Bekn8bH2t0w39YxEb5bZlCiBlXyfG05xmLSAPAJwE8DeCXVfUTBYd9\nt4h8G4AvAPhxVf3q6C7TMI4Obsa+kYRJbbEmX7eNgzETFXiqGgN4lYicBvB7IvJKVf0cHfKHAN6n\nql0R+SEAvwngtbvPIyKXAFwCgIsXLx764g3jKLkeh8yIB06ZrsXHaVvoG+y3l6lZ7112C7zfsjEr\n635B8UJh1gSAJCqYgMbiI+8+WV4lR7sCaEcd8kxGkE1RMY7WAfBeAP8cwB0A36uq/7DXefd1Zaq6\nBuCjAJ7Ztf2OqnoJ8T/cBRT9/GVVXVHVleXl5f08tGEYxqFIGwVFlW5D8HG0bwDwKgDPiMg37zrm\nLQDuqerTAH4RwM8NO+nQRxWRZaeIISKLAL4DwN/tOuYC/fcNAF4Ydl7DqBv3r13E/Wv2jW1WUQh6\n2qh02/M8KcPiaG9E6hAAwAcBfLuI7GlYV7EpLgD4TecbRwB+R1X/SETeCeCKqj4P4EdE5A1Iayjv\nAnhzhfMaRi25RStjrFGhhg/KpdvT5u73k9Dk/UEcxptJGrgrCsQBIehWZk10KSjXT3wAL2gntina\nkUtj4zlkP4u9DbEsYjlogC89WUOoKf4Es09UsZ+ij3MicoX+f1lVL/v/VIijPQHgq+njal9E1gGc\nBXC77AGrZFN8FsCrC7a/g8ZvB/D2YecyjDrgewkDwDoF6CxNbdaR/RR93FbVlbKdFeJoRQ+0Zxaa\n/fUZhuNmkirMB6RK11j50ngtPpZui4NaXnfbAEpHS4pLlHtJvvlPP2GVHBTcjrse3j9Qw2XsQyUX\nprYVpcPR9ipqecEp4g5dzEayjZOPf2XvCxoTin0p42rnVF0TkY8ijaPxZHwVwJMAropIE8AppK5B\nKTYZGzMNFxjcS1L7YZbbVxp7M4rUNhFZBtBzE7GPo+0O0D0P4AcA/BWA7wHwZ65moxSbjI2542Yc\nVtFYJxV8P0kTrdaSoHCL1DAAbDhFvN7P+8TAcJ/XK+adpFgZ9/nnnIqOhqzcXEYcHaDQocxHLprL\naP/xRkiva4m/r0cPYYWMqrl8lTjabwD4LRF5EakifnbYSW0yNmYOLltumQ9sOBTZKscDn6daHG0b\nwJv2c177SzVmGm7ec9dlRmR94HyhRnZbXg3z+H4vbMuo4IHypayIArXr73fv34mDmvSKuN0oLjUe\n91JCGX/YQ5tORuGbRosyJ1ouhlUXZQyI9TM2jKPAt7Nsoi5vfqNOKEZTgTcubDI2Zg4uW75LJcRe\nEbPaLfKEWQGzJ7wRh+LdB04Rb8dcolygfAu2AUDPKV/eH9N+JbXbLFHEo2JoUIt2tzS9ltMScrG5\nXWeLfO2WU9TryTbOPn51BFd6eEwZG4ZhTBhVMWVsGOPizrWXDMYLtfEmjTqSBvDq+zdik7ExM1yL\n07SqVSpLvhMvDcaDQg2yJtbp2I2+C8plrImQrrZBwbrNfmpPlNoQLoDH1kN2nH5djjW/DQCajf3U\nM+/NYZca6kScrpZaEu2MNcFBO7Ipateu0tbAM4xDwz2Gb8fsV9b3zWXUizSAZ56xYYyFm3FQYqtO\nBd+KTwy23e0HZexT1tb7nK5GQTmnjB/2gxre7LMyDuNunL51SpWve9NntsV5FZzQ/ig6mBoeTDAj\nfDcfi8IKJi0JAcS2G2e2gfeHya5TwxzvqW8ubxiTwqerTXq5HmP6GWEF3liwydiYCq7HDwfjVUon\nu0MrbazGJwEAd/thGytjr4Lv94P3+7AflPGGG3s/GAAeshruhbeL9x7Z5+1ToUbilS+9+ZWO9fu5\nw22m2Jn6AGlV5cu9gw74zl5ya+e1qBFR1h9Oxy1Swwukklv0hOpY/TjVC5IaxlGzdu3Jwdg8YWNU\nqIZueXXEJmOj1vgMibtUiJHxhClbYrWfbr/XC8qYMyO8Is74wDTe6qWKeJPVcJ+a+/RZ+aZv6mHK\nV+Pi/R5pHHCh9UOq5GYU1Gwzo2zznjCPF1xmRTuznzMowmt0P9nC6cfrsy5xalPYZGwYhfgsiXtJ\nqJqrX0qUMStYBZ5h7INrccgquONyg1eHqGEAuNNLx2s9agRUkBvMWRHb5A93++nbYXuHmvv08z4w\nAKhXxmXK1ytmTpDg4NFAEYcDDhzp34dKbrbSx2tybjCPnWJeEM4tJhWMIuUMGtf3g7TuqW1VFiRd\nEJG/FpHPiMjnReRnCo7piMgHRORFEfmEiDw1jos1DMM4OKlNUeU2CaooY78s9YaItAD8pYj8sap+\nnI4ZLEstIs8i7Xr/vWO4XmMG4DXo6tNe0ZgHDluNOE6qLEiqAKosS/3TbvxBAM+JiAxbZsQwfMra\n3Tj8Kd4iG8JbEmxHcLraHQrWrfVSS4N7DLMlseUsCR+oA4AdSlfzqWtxj6yJ/jAbgveH3RLn96Mg\nWKclS2ocxLLQRvFE02kEn6LpCksyAbxoWACP09z8/nzfYqDe+eBpNkV9P/wrecajWpZaRC4BuAQA\nFy9ePNyVG1PF/Wvh921q2JgEM1H0MaplqVX1MoDLALCysmKqeU65TmvQ3XHrzq1mgnInB2Ovgm/3\nwv57VM58byeM7++kivhBLxRybJMK3nbKl9Vwj1VwL1Wj2qe+wqxsaRyUb9gtvN9t34/9eFiVLJRi\nJs0wblKZtQ/csbLtRFzUUVDuXKCS2+AAYLi+OvUuLmKqbQpmlMtSG7MPF29ENX4TGPNB3bMphk7G\n41qW2pgvbiZBfd3gcuVkb0/YK2LvBwNZNby2Q/7wTqqI2RPuFqSp9XeCGs6oYKeMpZ9XuOk4X7uc\nUcO0IMfgPU8KVQs+kHhu4L1FKrlMIfufa5DCbRSoYQBoO/+4yCfmcaugBDodp+fqSJ1bZZYz7UUf\nY1mW2phdWBEbRl1QlUz/6bpRJZtiLMtSG7PPzTgorhvkCd/onxqMffP3272gjNkTvruTqmjOkFjr\nUqOfneAPP+ymmRNctswqeOAJ98IbUmgc9VzzHv5OF5epZH/Skq+9g8wJ2l+gkrNqmM6f2e6vMVwA\nL1jhW282Coo3gDLPuEwZ++bx3AgoFID4dpntTEOg6QnITrVNYRhV4OWPGuYPGzVkVJ6xiDwJ4L0A\nziP9hLysqu/adcxrAPwBgC+5TR9S1XfudV6bjI2R48uZb1AJ843+6cGY/eHbgxJmUsM0Xuumpc2c\nIbHRDeOtLuUMO384JjUM8oSxk469AgYA6eU936KsiN1jL1JZRfM34BC1L9G7TiWzjzxUJdP5oygc\n0XDjRlSSQRHlFXMrsy14wr4RUMYnBitn7xmHi9nUXq0zKJgRKeM+gJ9Q1U+JyAkAnxSRP1HVv911\n3F+o6uurntQmY8Mw5oJR5Rmr6nUA1934gYi8gLTWYvdkvC9sMjYOzOq1JwZjS10zpoF95BmfE5Er\n9P/Lrk4ig+vD82oAuwvhAOBbROQzAK4B+ElV/fxeD2iTsTESrlFa1w1XtMGButtUyHGzR0UdLkC3\nTp3WitLVNrpU1kzjfpcCdN6e6OWtCQCIXMoaLe9WmMY2zJrg7WUrv/v4WTLMfChJfctMGc30wYRs\nCB433ErSjRJrglPbfO/iTllXtoKijwWyMU648y5J+H1NC6rZFbyHcFtVV/Y6QESWAPwugB9T1fu7\ndn8KwEtdT5/XAfh9AC/f63w2GRuVSG68YjC+FaetShpiatiYLkaVTeGapv0ugN9W1Q/t3s+Ts6p+\nWER+RUTOqert3cd6bDI2Dsw1Co7dKkhdu0nK+NZOUMOrO+HYNVfAcZ9S1B5Q6trWThqg26ZAXUYN\n01h28kUb0Q6NXbAuCqIwU6hRpIyL1HD6n9zuQrKlG0UquST1rUUq2p2EWwVHwgG8AmXMhR5Rvmij\nVVL04dPYTkahZP2khK8Sp1wjoK72cfLxr2CaGJVnLCKCtLbiBVX9hZJjzgO4qaoqIt+I9Ld4Z6/z\n2mRslMJq2DBmAR2NMv5WAN8P4P+KyKfdtv8C4GL6GPprSCuRf1hE+gC2ADw7rCrZJmOjEt6aAICb\nbhXkstS1m71UEd8ib3i1S20xuyF17YFTxA9IGW9uB094kK7WpT/VLvnA21TAMfCEWQ0jNyahmPWH\n4/w2FKhhIHjFxa19iilUyeT9sp3JaXK+AVDUCI+QSW1z+0sLPQraZbIaPkEq+ERjK7ftFF3LUhS+\ntUwjo2gUpKp/ieLmaHzMcwCe2895bTI2cvh16aIp6jlgGMNQtQo8Y0q5QWr4BjV/vxG7bIkeqWHK\nlvD+8O0ue8Mh+n6vG8a+gIOLN3qkggee8HbwhjPKt5v3h1n5cuaEV8YZn5i+OIYS5+L9yZB3y35U\nsl9EOdMqgbMlGvnMiUwGBSnfxqBhfLFnzO0ylxpdAMCpxuZgm1fDAHA62nT34SvFiYgyWbSL4xe+\nvNczqzGCuHo2xZFjk7EBAOhe/7rBuFHjRSUN4zCMyDMeCzYZGzn8Ukg34uDj3uA8YZclwWXNnC3h\nFTF7w2ukhh9sU/N3p4h726SGqZxZnCccUb5wY5vVcLjugSfMPjHvL/CEi7IpOB0405AnDCur5Mzi\n0JyT7FSuNvJZE7wfCIqYMyiajQJlTE9soRFehJMt9oS3M/dAUMMAcMK9YCciLnfuY/nxr2Hamfp+\nxoZhGDOBpr5xXbHJeI7hVZqtnNmYB2Zm2SVjdrkehyDOzThNX7pFqWtcwDFIXduh7ms7+dS1tW0K\n1JE1sbVNBRzenqDijYhT11yArsGBum647sYwm6KgwCNb7kx2QMG6dWVv3oENUfIO8t+G+VxsUwy2\n8+kjjiaGsU9pizhox2vYudU7jjUp6EbWxFIjPz5NATwu8DjhXqSTU1juPAy1AJ5RJ1gNG8a8MdU2\nxbgaKRuT5yat0uzVMADciFPle6OXV8MAsOoU8e0dWsuOgnXrThFzoK5L6Wp9UsbYSuWiULoaB+j8\nmANxJPQyaWxeJWeUcT+vfLNBOypBjtLHyjb/oaKMApXMOiumpzU4R0khhx8rqWEO5nFRhx+3muHC\nO63wxJdaO+6eFXD4+nCKU9ecIj4RcTpbl8bp72lLezj9+Fcxa0x7NsVYGikbRwunrhnGPKI65ZPx\nuBopG5OhTA1/jcqZfWkzlzOzP3zHpa5xq8v17Xzq2jYp4JhS17waBkI5MxdvNNgTdmNWw0U+cbpd\nc9uimJRxUbkzkbjmPKyAMw6j5FVyxjOO8uMiNZxerOZ+hos6Imoa1HSKuEPK+HgrvAjHmk4Z0wtz\nqhmULxd1eEV8OuJt4RqWovBtZhaZmdS2UTZSNsaPL2s2DCNlqj1jzygaKYvIJQCXAODixYsHvmhj\n/9xKUiW0mlAhRxx8YG704xVxkRoGgLuugGM9ky0RSma7bhxTCXORGgaA5tbenrAXe9ltmtsPAFFP\nM/dAKPQAsv6wJ2mwCs6vW8cqOdO+2b9zhnrCvI38YX8uLntuUrZEK1x4242PZdRwkP/HnTI+SWqY\nMyi46Y8v8DhBZvuShGlgM9mZutaYVVEIkhpnU1S6siqNlFV1w40/DKAlIucKjrusqiuqurK8vHzI\nSzeKSG68YnAzDCOLVrxNgirZFGNppGyMn1txyCX1pc1c1szZEkX+8Op2UMZ3qZz5/nbqFXPucJf8\n4cT7w1ucL5xXw0BQvBnlW+AZN7dZDZPy3clvF/aJC3KKk2axJ5wMtoX9Sj6xz7ZIx9l7oDiPuHS/\nbx7fpraYLcodpmyJxVYvcw8AS83wIp1obrttpIApj/h04+FgfNJlTpym59JFPBPlzkOZ9gAextRI\n2TAM48ip8axUJZtiLI2UjdFitoRhDGfalbExRdwq60Hs7ImismagOFjH1gSXNj/cSu2JHe60xitx\nOHuiQYG6RoE1AQA+5lRkTQDBnmhukTXRo6/2bFm4Ao+oT94EF3U0XBodaDeN/fa4wXZEydj3I+bV\nPwosCS1Z106dJRFR0K6VCdoFm2LBBeuWmiGAd5xsitCjOJ/Clo551Y70vEsy3St2HAQFkCQ2GRuG\nYUwWRfbTs2bYZDwj3EnSII1fnw4IK3IAwKpXxgVlzQBwbyeUM3tF7AN1wK516Zwi5kIOodQ1X8LM\narjJAbog2gbbGxSga7Iy3nIrH2+TGqbUtUaXcteGEYcQHXIjIHaBvaHNfWjM+7kAJHHxzKRNP0PK\nWJwybraL1XAmWOdS2o6RMj5JL+ipZr7EOZvORsG+KL3gTe3h7ONXMW/UOZJlk/EUs3rtiUlfgmFM\nFzYZG+PmRizunlZsLlijLtv2cu9GP2Wpa14RR5tcyEEq2CniTLoa+8QZzzjvCWfS2LZS5djosk8c\n1KSQf6ytVK5qszh9fpClFoefSdrhLVDUKKhMJSdunFBzoOzYp9HRu78gja1JJc4LrIypqMMXeLAa\n5kZAXgVzOttZSmc7Q8Umj0Thdz5/iAXwjNFx59pLJn0JhjG9mDI2xsEq2aU33Hp0XNZcuGJzQRN4\noLi0ubCQA8EfLlLDABVyFHjD6bHhHdHadMqYPOHGFq1yvJmqRemTGiafWOIwVueXaytIWG3S2GdJ\nFBRvAKR2KZuCC0Qyyredvc/vzxd1gDInmi5zotOmrIlWXg0DoVE8lzufaYasmeVm2p3gbCNsO0Pd\nkh6Jwu+2p310LnwRc4kCOoJsiopthQXAuwC8DsAmgDer6qf2Oq9NxlPA2rUnJ30JhjEjjMSmqNJW\n+DuR9ud5OYBvAvCr7r4Um4ynjJtU6nsjDir3hssf5myJOz3yhwtWbL7fDdkSmUbwThknXW70k1+d\nOdsEPhzqBVyTlTF7wpukjH22xGZQuI2toBajrVThRV3qixlzHnEYSz/9c9Y++8jkD3dcFkgnSFjN\nKF/XFrPUB86PMxkUbcoj9l4xPX6DMid8TjFnTZxoUZP3NqngVur/PtIiH7gZxt4fXqZfwnIjSPY+\nYhy/8GUYGIlNUbGt8BsBvNdVIn9cRE6LyAX3s4XUt4WRYRjGqKneKeiciFyh26Wi0+3RVvgJALxU\nylW3rRRTxjXm/rW0zehN8kUz2RIZf9gtEkoNf1a71RcJzTaCd4o4kzucr6YrzR0eKOO91TAANB+m\nKrixGRRitBnyaWXLjVkNl6HuHJkKOlbB6XPwChgA4lZeGcdt2l/qCfv7AjUMQJ1XzGq4Tf7w8Y5r\ne9kJL+LJNuUGt0JmhFfEy80Hg23Ljfs0dvuj8PvqaTKTyyYdiv0VfdxW1ZW9DhjSVrjogfbU5TYZ\nG4YxN4yq6GNYW2GkSpiDPS9BuvBGKTYZ1wyvhg3DGAOjyaYY2lYYwPMA3iYi70cauFvfyy8GbDKu\nNTeT9GttNlBH1kSm0U9qTxRZEwCw1s0XcmwNWaMuKmn006yYupaxJh6Gr+tNDtY9dAG6hyF4JZt0\nYm9PNCv8qfqlOBqUztYKzyFp522KpMCSyNgR9LBFlkXSIWtigYo6OulzbHbCc13s0Ooc7fT5nqSg\n3SNtKtqgYJ23J85Q6lpRUce2xjj/xJ7ia+6R0SjjKm2FP4w0re1FpKltPzjspDYZ14Ct6y+b9CUY\nxuwzomU8KrYVVgBv3c95bTKuGXeToJ5W41TN3qKg3Wo/jG9ysG7Hr9gcAnT3ugUrNneD7OuTMs6s\nUedW5Sgq5OBxWSGHV8SZQB2p4eZGCNANFDGr4a1wYu25oo9FavnYKVnBuJX+OXOJc9IOzyseKOOI\ntkluzAqYFtAGLR+IeMGVO1MADx16vk4RL3bCc13qUOqaC9yxGn6kGcZc1OEV8aMNDuCFv5NzjXku\ncd4PYl3bjGKsIbxhHDFWDm3sxb0kKCZevXnVtcBcpbLm21TIsdajdenceJ0KOTa6lLrmFHFvi37l\n5AnzGnWNgkY/XMAxUMYFZc1AKG32aWtA8IYBQCh1DRupGtSN4IEmNB5cH6X3CRV6YCmowsQVcyQL\npIY7pIIX0nF/Maij/gIp44XsPZAtd47JH058mfMC+d8dKm12/vASKWMu6jjpSpw5he1ci0ucWQU/\ncPfhF3ImotW4tWdFHVWpkCE5KYYWfYjIkyLy5yLygoh8XkR+tOAYEZH/LiIvishnReSfjedyDcMw\nDojPM65ymwBVlPFY6rCN0BB+lRrC341DBsSdfuoD3+sH9bfWC/vvUQvMNaeIH+zk1TAA9NyySLqT\n94aBbNMf352RlXFEYnawFNJ2Xg0DQNNlTmQKOThb4mFQg14Rx+uUM69U4txMn4MskGFLY10MCjFZ\nTI+NF8KfdbwYnm9/0SljVsPsA7cLti2QGi7InGh0ios6FttOGbfZJ6YS53b6vFkNn2uG1yCbOZH+\n3JkoPC8r6jgYI8qmGAtVFiQdSx32vGJ5xIYxQaZ5MmYOUIdtk/Ee3HVNf+4kQe3eYn/YZU7c7lHu\nMCnj+70g4R46RbxFaniHFgn1TX8yucOshkn5DpRxRg3nx+wZ87JIje1UIfomPwAgW7SWEmdL+DGp\nYQgpdu8JUzaFHgteeXIsKON40TUCWgw/zyq4716ujPLNqOCibaSGKVsicmXOLfKJjy2QP+yyJU5T\nifOpVlDGPnOCsybO0vhRUsbLTtz3kGD58a/BmE0qNwoaRR22iFzyjTdWV1f3d6WGYRiHRLTabRJU\nUsajqsNW1csALgPAyspKjb8wjBYr6jCMGqAYSTn0uBg6GY+rDnteuU1FHbfi9Cs4p67dpdLnuy5w\nl0lh2wlf17kf8cOuW52DbIqEgnXignXRTvhjjLolRR0FAbxGN29JZKwJ7kHsAneDjmu7odJmcYUa\nEcJz4QIP8TYFWxPHg48QH6OS7mPp8+0vkE2xyKlrrqijwJoAqBMbB+oyRR3Uj3ghfb7ZEmdavdkF\n7tia4BLncy2XrpZJYeNCj/B6zve6dSOmxhKwijIeSx32PNC/8fSkL8EwDGLasynGUoc9T9xOgsS8\nQ0Udd5NUBd8hNcxFHXdd6traDq1VR8r44Q4l/u+44BWvzrGdT2NrFKSwlY1ZDWfKnd32Bq1Fl1mx\nue9UHa1bl4HKmf3VDH4GyAbrjqfPXTlQd5xKuo9TupcL3PWOUdAuU+Dht4WHYmXcX3QlztTwB4tU\nxr1QVNQRXrhT3I/YlTn7FDYgqGEgrFd3JqIAXhTOdS4KF9bTGIsXvgRjBEzzZGwYhjEz2GQ8n9xL\nUr/wbhxe5lVSwauD1LWghu/0gj+47rzi+zucwhYUIqex9XwLzC6r4bw/HBWksOW3O+W7Qz5xT+nY\nJHMPANJG75GBAAAaI0lEQVRjZbyPmlOvkjtcyBHG3h/OqOFjtKIFp7E5RVykhgHA9V0qVMMAKeKM\nGg6e8CKNTyykL94jXMjRCcUsy+1U8T7WohU5yB8+31x391QOTauS9DTGyce/AmN0TDJTogo2GY8Y\nW8nZMGrMNGdTGAdn1QmsW6SGfYkzANwdlDuTJ0yZE2vOH35AWROb20EZ97iow2VOZEqcu/miDlbA\nES243CjYntlGKtiPhTxhVsalXnERzfS6i8qagZAtUeQNA0ENA0ERZ9Qwq2Bf1MFquJP3hxvkDXeo\nqGNpIV/azKs4L3eoaKOdKmIucT7fXAtj5xk/FmXfgqaGx4sp4xnn4fWXTvoSDMOogk3G88PdJCip\nOy6PmHOHb2faYabb72Ya/tDqzb7EeYdKnHfyahgIecTSI5+Yc4qdys1kTWTUMPnDziuO+mGbxDxO\nctsytPw1UoZEk5ZCakY0dg3hOV+YGv30jxfkDpdlS3hPuCRbwiviOJMtQbnSrh3mQoE3DACnF/L+\n8DlWw+QPPzbwhNcH285THvFjbmmoBGoNf44K84wNwzBqgk3Gs4cVdBjG9CE1bi5vk/EIuJuE7/ur\n9L141a1dx+vWcQc235v4fo8KOXohkOXT2Lo96s9L1gR2KFjX86lrZE1QgM7bFBHF1oRchAYf67az\nDRHFxZaFR2lF5gHN8Fy01Sgc+zXqfMc1IKzIAQR7YlghR3oO//OgY8O1DjqwkTURcbDOdV1ja+JU\ngTUBBHvCB+oA4LEWWRIDmyKksz3WoNJsKM4+fhWG4bHJ2DCM+cFsitnjdhxU0mocgk+8krMP3K3T\n6h33qRb3gWuwu9kPP7/Zy5c490kNay+oRiFl7AN3UYHC5XF2vxaOvfLloJ7QfnUKLyGFy71YfYBO\nSQlqk9UwrUvXccq4pLmP70c8TA2n5/I/z4UcdN0+da3Daji8IEteGXdorTlWw+186tpjZalrThGf\nb9C1ANaPeJLUPIBXuZ+xkbJ27Ukr7DCMaUUr3oYgIu8WkVsi8rmS/a8RkXUR+bS7vWPYOU0ZH5B1\nCgSsJaR2eexk2zqp4Y04KN/Nfjpmn7jbpzXb3DjpUQobKeOoz/6wU8YlnrDfLnF+2+7tkuT/GpMW\nPW7YGkZC6t0pYo3C9SWdYmXc77i2lhmfGDQuaHu5iMJjQ+paXg0DoZijvVBcyOH94TNU4nyOGv08\n2qZ2l175triQg/ZH6WsTK3D+iVxrb2NSjE4ZvwfAcwDeu8cxf6Gqr696QpuMK2DN4Q1j+hGMLptC\nVT/mlqEbGTYZ75MHmqqqtSRIsqwaDtvXnYTbIFm32Q/jjV4+W2KHMyecCtZeXgEDgLD/28veA1nP\n2Ctf/mPM/GEWKAZtFtfx62Apc9LIHfKHnSJOGqyMySdu5TMj4k6xJ+wbvpe1vYwz2RK+0Q8XcuT9\nYV6r7uQC+8OpIj5LhRzLpIY5W2JQ1NGgbIpGUOGPNkLWjFET9ucZnxORK/T/y26lov3wLSLyGaSr\nHv2kqn5+r4NtMjYMY36oPhnfVtWVQzzSpwC8VFU3ROR1AH4fwMv3+gGbjCuwoUFJrSWp93mflPEa\nZUtw5sSGk3APKI94g/zhbZdF0e1TExzyhxPnGbNPLOwT09irXClQwzzOlDWzMiYRnAwUMWVb0AGJ\nU8QakkAAzpxwlxtz1kR42ojblG878IxRfOwCcvsL214Cg0Y/ES2PlM2WSP3hIjUMBEX86BA1DADn\nXRbFeVoeabcajs5/AUbNOKJsCl60WVU/LCK/IiLnVPV22c9YNoVhGHPDUa0OLSLn3fqhEJFvRDrX\n3tnrZ6osSPpuAK8HcEtVX1mw/zUA/gCAXxfmQ6r6zv1dev24f+3ipC/BMIxRMyJlLCLvA/AapN7y\nVQA/BaAFDNYF/R4APywifQBbAJ51y9OVUsWmeA9GnMIxbaxRqteaC8qtJcGO4KAdj32Z82YmnS18\nt9/qOZsiE7SjFDFX1JGxI0rS0QZZZvTrzgTrNHsPBDsBABL6S/CWRDbwTD/oizro5zNpbO4pcqCO\nrYmEbYhO9r5sPKwHMRC6rnUoQLdE46LUtbOZHsSpPcHd186TTfEopa6dd+3vHm2EjnsJEjTPvwij\npuhIsym+b8j+55DOm5WpsiDpyFM46kz3+tdN+hIMwxgXNa7AG1UAb18pHNPAuobAz4MkqNkH6oJy\nMRd6kBqmvKyHThFn1TAVeDhF3Gc13KdgXSyZeyAbwONP+aggdS3zh+fGnG5WHqDT3LaYlK+6yy1T\nxv6LQNLKbwNKlHFJAM+XM5erYVqx2QXrhjX6eaQdSpw5WOcVcXZFDgrgNULg79Eo/f3HmqBz4Ysw\npoM6l0OPYjKunMIhIpcAXAKAixfNkzUM44iZ5cl4PykcLmn6MgCsrKzU8mXxaWwPkiD7uNx5za3e\nwSls67SG3cOYizrS8cNMOhulsflyZ1LDWqCCS0uYWQUnBdtIBGtBh8sEe6tkXrsxoZ/3ijjrOec9\nY1bA7EkXecJJp6DVJQD1iphS2MpWbB6krpU2+klLm8sKObw/XKaGH2sE+Z5AsXjhSzCmiIp9JybF\noSdjETkP4KaqatUUjrpha9gZxuwjmHKbYhwpHHVmPUmlZ1YNH8uNOWviIZU4c4GH94q3e8Ez7lEj\noMSpYI2LizoGKrfMBy7IlihTw/7QssTyIpVc5gkPlDGfnwpAfEdR3paUecbeE24XF3JIO/19tBbJ\nG+7k1TAQ1qgrb3uZKuJhhRzLUTgnq2EApoannKmejMeRwlEHkhuvmPQlGIZx1EzzZDwPPEg4c6Lp\n7osbAfkS5/uUTcEZFJw50Y1dtgT5zzGp4IFXTD4xj4tygzN5xAU5w+ztFqngjKVMD8vHxk3f6Cd/\nfj44KVHGSTu/LZMhQf6wz5JQypbgcuaWawTPajizYnNnyIrNvCySV76ZhvA09rnDEXUlAixbYpaw\nydgwDGPC1HylD5uMDcOYH2wyrh8bSUhZekC/oPtJx90X9yj2440+pavRGnh9+j4fO3siphyxRCkQ\n5rZrUSAOCLllmrcugOJ0NYYtiWEdoeKi1DWO6XEamy/6KLEhtOm3UYoaB+jIpoArYW60gzXR7uSD\ndUudYE08UmBNAMCysyfOtih1jW0ItyoH9yDOdl0Lpc1W1jybjKocehzM1WTcv/H0pC/BMIwJYjZF\nDdnQoIgeUEXCsHLnLRed6pMsZTWcCda5cULblFTyYMUMlqCZcf66Mw19+vn9ZRSltmUeitPYCsqd\nM8rYXUMmaJcZu9S4VkHxBgBQgK7hxh0K0C1ysK6dKuJTVMhxuh2U8TIH61w5c6aQo5lfo26vFTms\nB/EMM+tFH4ZhGFODTcb1YCMJvuMDEmqZNDaniDepMqFHcrTnVG6P8rpYDWeVsWTuAUAL0tSkJF3N\n12Foo2AjdnnCFVVykinkGDIu2e/9YVa+Catgr4zblK5GnnCL16Vrp+PjndDq8nibU9dSRXyyRWq4\nXZa65sqZM4Uc3PYyva6zkanheWTqK/BmAfOKDcMAAEnqOxvPxWTs2dSgzh5qk8ZBBe84w7RH+3vk\nD/txmU/MijnWIs+Y5aaXvrQpov8MTlXc0KdIJQ9TyOztliljr4izjYDymRFF2wBAWunVcIZEizIk\n2BM+3k4VMTf3OdmizAnX3Oc0KePHqPl7kT+83HgYtjWyb77lx78GY04xz9gwDKMemE0xYbxX/JB+\nEdsZ5ZsfF6lhAOg75dtPirMp4gLPOJtbTBfmrocVqHC+b+HH+N4qucxH9rZ3uRrW3HbOY9aMCnaP\nwp5wk8ZOGbfb4QKOLbAnTEshtZ0n3Ka2l62QO3zW+cOPNIPaXWYfOJMtkR77WKaBvuDs41dhGABM\nGRuGYdQBU8YTwIJ2hmHksMl4smy7wN02fS9na2KnwJLIWBOZ/ek5dkpS29im8IG7wkIPYGANCH3F\nV8onE2c9FNsV6RGBfEPjbImzSzfjEuoov59PkbEmWtRj2I0j2takYF2nldoTi20q3uAAHaeuufXo\nOEB3rhVS17w9wZ3Wsqs0h2Mfa4Qnd/rxr8IwMoxwdehxMBeTsWEYhuUZT4gure7cc6qxR8o4q4bz\naWysjH1fYoADeCVBO1K+PoAn9BcQUaqV/5DOhOEKVLKQ2h2mkjMFIhyU82q3JGiXUcnuHNIqDtB5\nFdxskhqmYJ0P0C1lFHBQxqdIBZ9xqWtnKEB3jgJ0Z5up8l2m5j7LvC5dFH43Jx//CgxjT0a0CJGI\nvBvA6wHcUtVXFuwXAO8C8DoAmwDerKqf2uucMzUZ2+odhmHsxQiV8XuQrnD03pL93wng5e72TQB+\n1d2XUmUNvJF/AhwFPcoh66m/JzWM4tS1bdcXkos3WFH7NLZ+wTYgq5L9ShoRK1BSk76qo2yJO6+S\ni3zkdHuBz1uidtHQ3H4pUclRo8ATbuU94YUWpa61KHXNjXkVDlbDZ1ukgl27yzPk/T5K/vCZRuop\n87p0ZyKqXIEpYqMiIyz6UNWPichTexzyRgDvdeuBflxETovIBVW9XvYDw9rcAuknwDN77OdPgEtI\nPwEMwzBqhyTVbkgXYL5Ct0v7fKgnAHAU+arbVkqVBUlH/gkwLnrUFnObSp99FgX7xNtUF1xU4FGW\nTTHMM25FpHwLX136/BuoZFoxmo4c5EeUZVtQMkXilW1G+eZVMvvXEhV72Q2nglvNvBoGgMVW6sez\nGl6i8clW6ul6PxgAHmnSis3U/P2sU8ScLXE2oobxrt3lWVuXzhgB+8imuK2qK4d5qIJte+ryKsp4\nGJU/AUTkkv+kWV1dHcFDG4ZhVESRBvCq3A7PVQBP0v9fAuDaXj8wigBe5U8AVb0M4DIArKysjDzJ\npJtRxuH0A7WL4gyKHc6mSArKock/5vxiT6sR57ZlKH2V3WdhgY8MDM+24FfeK15Wu9LIq+CoRDk3\n6Tm0nTJeaLIazqvgJWroc6JJmROunJnzhc80w5jLmc9E6fZHG0ENn6FyZm53aa0ujcNyhKltzwN4\nm4i8H2ngbn2YWzCKyXjfnwCGYRgTYUSTsYi8D8BrkHrLVwH8FIAWAKjqrwH4MNKkhheRJjb84LBz\njmIy3vcnwKix0mfDMIYxyqIPVf2+IfsVwFv3c84qqW0j/wQYF12Er9o9+g6/XdCJragEmsddWt2D\nU9ci99tsR0OsiTIqB/WAotQ3sPWQCca5MzWobJkDdO7YBu3nAF2bbIoFF6BbbIbCGQ7QLTlL4mST\nSpyb+XLmrDXBRRth+1mXsnbO0tWMcaM63c3lx/EJYBiGMRHqOxfPRgWeL33uUdBuu6D0eZtW9OAA\nXrcgzY37FTcpH+bAiriIiio5ooCWZBbMQ257IwrX2iBl7FVwk/Z7BQwAnQYVcDhFfKwZ1DAH6Hzq\nGvcYPkUBOB+gyxRy0PgMPda5KKw/uHjhSzCMcWK9KcaAlT4bhrEvFMA02xTTgC99zqazBYXpS5yH\nFXoAocCjU3W55VFQ8lsQyTcaYrWb8YzduEmeMPvAPv2uSAEDwEJme5EnTI1+XAHH6Uw6GvnDrsXl\n2Qat6EwZgY9ExzPPs3n+RRjGkVDfuXg2JmPDMIwqmE0xBhLKMei5cUwmalFToJ2ChkC7WYx2Crcf\nGfQb8RkQmRacKFbJ3ituk8JlZey97qwaplWayRNeaqTjU5QhwZ6wH7My5obvvsXlmSj752UN341J\nM9XZFIZhGDPBCLu2jYOpnYxjapEZq28eT43defkh5x8nlKnQEmqCEwWFOGnalPvrFXFUqozz/jB7\nv5z54VUwK+BjpIyXqGH7Kef1sho+3XhIY6eMI/aEw7nORCFr5fiFL+eeo2FMgrToo76z8dROxoZh\nGPvG1sAzDMOYPKaMx0BCX9f9h102gNek/ak9wdbEgoSv1Qk3Bh5FU9F9wj2QuSjD2xNsTbBlkSlh\ndjZBm1LyOD1vyRVwsB1xjIKVvH1gQ7A1QT2GT7sS5jMUQDzXsHQ1o+aYZ2wYhlEHprw3RV3h1LbY\nfdwlWtRaGViQVAHGVRRwMmT/CPEqOBOgo7Evw46oHJtLsxcpaOZVMBd1cJreCad8WQEfp3XlOE3N\nq2AO0J0ilX2aUtYsXc2YKsymMAzDmDC6r2WXjpypnYxj+oSLCz7s2BMewGo3Kdledf8BaZI/7L3g\nrDKmRj++xDmThkfKl5TxgkvP4zS9E1FQwV4ZnyC1m1HGtN17wqfoeZ+ihj6ANfUxphRTxqPBmgMZ\nhnEo6jsXT9dkzPTACjK9P8btLYd9HZmQSl4k5dsq8IRZJXtl3CGVf6wRfGBWwf6bwLGMTxzU7kmn\nfDNqmY49Ta+dFW0Ys4ok9fUppnYyNgzD2BeK6S/6EJFnALwL6TpAv66q/23X/jcD+HkAX3ObnlPV\nXx/hdQLIZlC0SKIuDNQkvdKHVckjzLZYJDWbUb7uZK0CHzndnvrDrHbZC18oUMashk8ItcAc+MDF\nWREnoxOZa7aVmI1ZQ6DTXfQhIg0AvwzgXyJdCfpvROR5Vf3bXYd+QFXfNoZrNAzDGA01noyr6Ltv\nBPCiqn5RVXcAvB/AG8d7WYZhGGNAtdptAlSxKZ4AwJn9VwF8U8Fx3y0i3wbgCwB+XFVHXg3AJbbH\nbjwddiTua3ym5qPAsqjgF8VRlD/2gEE9byNk0tWQT2PjbS0JNoL/+axNsZPbDwDH3fZsgI4tifTF\nOSmLmWvsXPhi8cUbxqxRc8+4ijIuKmvb/dHxhwCeUtV/CuBPAfxm4YlELonIFRG5srq6ur8rNQzD\nOCSSJJVuQ88j8oyI/L2IvCgi/7lg/5tFZFVEPu1u/2HYOaso46sAnqT/vwTANT5AVe/Qf/8HgJ8r\nOpGqXgZwGQBWVlYO9V2gUCUntEpHkUo+gtS3Fq8754o1Gpk0PEpjc59pvI0DdMdc0C0TtKPxcVLM\nx52iPpEp1MiuZmJpasZ8MxoLYlxxtCrK+G8AvFxEXiYibQDPAnh+18VdoP++AcALVS/AMAzjSFCM\nyjMeSxxtqDJW1b6IvA3AR5Cmtr1bVT8vIu8EcEVVnwfwIyLyBgB9AHcBvPmwF7YfvEou9JEBUsnj\nSX3Lqt18OTP7wI0h+49LPo1tgX1kKo1mFbwklKb2+Ff2ejaGMb9U94zPicgV+v9l980eGFMcrVKe\nsap+GMCHd217B43fDuDtVc5lGIYxKfaRZ3xbVVfKTlOwrSiO9j5V7YrIDyGNo712rwecqQq8Q2db\n7NpciFOjDfqlRiWesFfBXMjRljj3c8cz2RLcAD9x9+HCj0lY4Xop6mQuzRq6G8YQRpO2NrI4GjOB\ndS0MwzAmgCoQJ9VuezOWONpMKWPmQNkWQPWcZPJ2s55wvlE8+8TDlG+Lxh2k2RAdyf6aLDfYMA7I\nCJTxuOJoMzsZG4Zh5BhRdd044mg2GRuGMR8oAFsDb7JUT30DhhWI+DSzbPc1LmemsdvONsQCBeA6\n0nb32eIM65hmGONAAa1vPfRcTMaGYRhQVAnOTYy5moyHpr4BhQUiLWq441cVaZCc7khISmmBlW94\neS3oZhg1oMYtNOdqMjYMY86xybh+lKnkhrq2lwiecYPTzZzaNZ/XMKaNyfUqrsLcTsaGYcwZCsAW\nJK03mTJip5I70rLyYsOYNUwZG4ZhTBq1bIppwtSwYcwoCqjlGRuGYdQAq8AzDMOoAeYZG4ZhTBhV\ny6YwDMOoBTVWxpWay1dYlrojIh9w+z8hIk+N+kINwzAOh0LjuNJtEgydjGlZ6u8E8PUAvk9Evn7X\nYW8BcE9Vnwbwi6iwxIhhGMaR4ltoVrlNgCrKuMqy1G9EuuAeAHwQwLeLSNGifYZhGJNDk2q3CVBl\nMi5alvqJsmNUtQ9gHcDZUVygYRjGKFAAmmil2ySoEsCrsix1lWMgIpcAXAKAixcvVnhowzCMEaH1\nbi5fRRkPXZaajxGRJoBTSBfhy6Cql1V1RVVXlpeXD3bFhmEYB6TOATzRIakebnL9AoBvB/A1pMtU\n/ztV/Twd81YA/0RVf0hEngXwXar6b4ecdxXAl91/zwG4feBnMTvY62CvgcdehxT/OrxUVQ+l4ETk\nf7vzVeG2qj5zmMfbL0MnYwAQkdcB+CWEZal/lpelFpEFAL8F4NVIFfGzqlp5aQsRuaKqKwd6BjOE\nvQ72GnjsdUiZp9ehUtFHhWWptwG8abSXZhiGMT9UKvowDMMwxktdJuPLk76AmmCvg70GHnsdUubm\ndajkGRuGYRjjpS7K2DAMY66pxWQsIm8Skc+LSCIicxE5ZYY1YpoHROTdInJLRD436WuZJCLypIj8\nuYi84N4TPzrpa5oEIrIgIn8tIp9xr8PPTPqaxk0tJmMAnwPwXQA+NukLOWoqNmKaB94D4EjzOmtK\nH8BPqOo/BvDNAN46p38PXQCvVdVvAPAqAM+IyDdP+JrGSi0mY1V9QVX/ftLXMSGqNGKaeVT1Yyio\n2pw3VPW6qn7KjR8AeAH5XjAzj6ZsuP+23G2mA1y1mIznnCqNmIw5xPUFfzWAT0z2SiaDiDRE5NMA\nbgH4E1Wd6dfhyFb6EJE/BXC+YNd/VdU/OKrrqCGVmiwZ84WILAH4XQA/pqr3J309k0BVYwCvEpHT\nAH5PRF6pqjMbUziyyVhVv+OoHmvKqNKIyZgjRKSFdCL+bVX90KSvZ9Ko6pqIfBRpTGFmJ2OzKSbP\n3wB4uYi8TETaAJ4F8PyEr8mYEG5Rht8A8IKq/sKkr2dSiMiyU8QQkUUA3wHg7yZ7VeOlFpOxiPwb\nEbkK4FsA/C8R+cikr+mocM343wbgI0iDNb/DHfHmBRF5H4C/AvCPROSqiLxl0tc0Ib4VwPcDeK2I\nfNrdXjfpi5oAFwD8uYh8Fqlg+RNV/aMJX9NYsQo8wzCMGlALZWwYhjHv2GRsGIZRA2wyNgzDqAE2\nGRuGYdQAm4wNwzBqgE3GhmEYNcAmY8MwjBpgk7FhGEYN+P/NUb1anthRWgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"a,b,g,r=m.mncontour_grid('a','b',nsigma=3)\n",
"pcolormesh(a,b,g)\n",
"colorbar()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Дайте мне 3 параметра, и я профитирую слона. С 4 параметрами он будет махать хоботом.\n",
"\n",
"Пусть у нас есть экспериментальные данные, и мы хотим профитировать их прямой."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def fit(a,b,x):\n",
" return a*x+b"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Данные не настоящие, а сгенерированные. Все имеют ошибки 0.1."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"x=linspace(0,1,11)\n",
"dy=0.1*ones(11)\n",
"y=x+dy*normal(size=11)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Функция $\\chi^2$."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def chi2(a,b):\n",
" global x,y,dy\n",
" return (((y-fit(a,b,x))/dy)**2).sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Минимизируем."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib64/python3.6/site-packages/ipykernel_launcher.py:1: InitialParamWarning: errordef is not given. Default to 1.\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
}
],
"source": [
"m=Minuit(chi2,a=0,b=0,error_a=1,error_b=1)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" \n",
" \n",
" FCN = 17.644418929505377 | \n",
" TOTAL NCALL = 32 | \n",
" NCALLS = 32 | \n",
"
\n",
" \n",
" EDM = 4.646403811874004e-23 | \n",
" GOAL EDM = 1e-05 | \n",
" \n",
" UP = 1.0 | \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
" Valid | \n",
" Valid Param | \n",
" Accurate Covar | \n",
" PosDef | \n",
" Made PosDef | \n",
"
\n",
" \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" False | \n",
"
\n",
" \n",
" Hesse Fail | \n",
" HasCov | \n",
" Above EDM | \n",
" | \n",
" Reach calllim | \n",
"
\n",
" \n",
" False | \n",
" True | \n",
" False | \n",
" | \n",
" False | \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" \n",
" \n",
" + | \n",
" Name | \n",
" Value | \n",
" Parab Error | \n",
" Minos Error- | \n",
" Minos Error+ | \n",
" Limit- | \n",
" Limit+ | \n",
" FIXED | \n",
"
\n",
" \n",
" \n",
" 1 | \n",
" a | \n",
" 1.06563 | \n",
" 0.0953463 | \n",
" 0 | \n",
" 0 | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" 2 | \n",
" b | \n",
" -0.0337525 | \n",
" 0.0564076 | \n",
" 0 | \n",
" 0 | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"({'fval': 17.644418929505377, 'edm': 4.646403811874004e-23, 'nfcn': 32, 'up': 1.0, 'is_valid': True, 'has_valid_parameters': True, 'has_accurate_covar': True, 'has_posdef_covar': True, 'has_made_posdef_covar': False, 'hesse_failed': False, 'has_covariance': True, 'is_above_max_edm': False, 'has_reached_call_limit': False},\n",
" [{'number': 0, 'name': 'a', 'value': 1.0656301806229376, 'error': 0.09534625880413838, 'is_const': False, 'is_fixed': False, 'has_limits': False, 'has_lower_limit': False, 'has_upper_limit': False, 'lower_limit': 0.0, 'upper_limit': 0.0},\n",
" {'number': 1, 'name': 'b', 'value': -0.03375249916931122, 'error': 0.05640760739068982, 'is_const': False, 'is_fixed': False, 'has_limits': False, 'has_lower_limit': False, 'has_upper_limit': False, 'lower_limit': 0.0, 'upper_limit': 0.0}])"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.migrad()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': 1.0656301806229376, 'b': -0.03375249916931122}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.values"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"17.644418929505377"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.fval"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((0.009090909067945735, -0.004545454529982192),\n",
" (-0.004545454529982192, 0.0031818181715422044))"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.matrix()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([ 0.69687852, 0.7043112 , 0.71174387, 0.71917655, 0.72660922,\n",
" 0.7340419 , 0.74147457, 0.74890724, 0.75633992, 0.76377259,\n",
" 0.77120527, 0.77863794, 0.78607062, 0.79350329, 0.80093596,\n",
" 0.80836864, 0.81580131, 0.82323399, 0.83066666, 0.83809934,\n",
" 0.84553201, 0.85296468, 0.86039736, 0.86783003, 0.87526271,\n",
" 0.88269538, 0.89012806, 0.89756073, 0.9049934 , 0.91242608,\n",
" 0.91985875, 0.92729143, 0.9347241 , 0.94215678, 0.94958945,\n",
" 0.95702212, 0.9644548 , 0.97188747, 0.97932015, 0.98675282,\n",
" 0.9941855 , 1.00161817, 1.00905084, 1.01648352, 1.02391619,\n",
" 1.03134887, 1.03878154, 1.04621422, 1.05364689, 1.06107956,\n",
" 1.06851224, 1.07594491, 1.08337759, 1.09081026, 1.09824294,\n",
" 1.10567561, 1.11310828, 1.12054096, 1.12797363, 1.13540631,\n",
" 1.14283898, 1.15027166, 1.15770433, 1.165137 , 1.17256968,\n",
" 1.18000235, 1.18743503, 1.1948677 , 1.20230037, 1.20973305,\n",
" 1.21716572, 1.2245984 , 1.23203107, 1.23946375, 1.24689642,\n",
" 1.25432909, 1.26176177, 1.26919444, 1.27662712, 1.28405979,\n",
" 1.29149247, 1.29892514, 1.30635781, 1.31379049, 1.32122316,\n",
" 1.32865584, 1.33608851, 1.34352119, 1.35095386, 1.35838653,\n",
" 1.36581921, 1.37325188, 1.38068456, 1.38811723, 1.39554991,\n",
" 1.40298258, 1.41041525, 1.41784793, 1.4252806 , 1.43271328]),\n",
" array([-0.25190892, -0.24751169, -0.24311446, -0.23871723, -0.23432 ,\n",
" -0.22992277, -0.22552554, -0.22112832, -0.21673109, -0.21233386,\n",
" -0.20793663, -0.2035394 , -0.19914217, -0.19474494, -0.19034771,\n",
" -0.18595048, -0.18155325, -0.17715602, -0.17275879, -0.16836156,\n",
" -0.16396433, -0.1595671 , -0.15516987, -0.15077264, -0.14637542,\n",
" -0.14197819, -0.13758096, -0.13318373, -0.1287865 , -0.12438927,\n",
" -0.11999204, -0.11559481, -0.11119758, -0.10680035, -0.10240312,\n",
" -0.09800589, -0.09360866, -0.08921143, -0.0848142 , -0.08041697,\n",
" -0.07601975, -0.07162252, -0.06722529, -0.06282806, -0.05843083,\n",
" -0.0540336 , -0.04963637, -0.04523914, -0.04084191, -0.03644468,\n",
" -0.03204745, -0.02765022, -0.02325299, -0.01885576, -0.01445853,\n",
" -0.0100613 , -0.00566407, -0.00126685, 0.00313038, 0.00752761,\n",
" 0.01192484, 0.01632207, 0.0207193 , 0.02511653, 0.02951376,\n",
" 0.03391099, 0.03830822, 0.04270545, 0.04710268, 0.05149991,\n",
" 0.05589714, 0.06029437, 0.0646916 , 0.06908883, 0.07348605,\n",
" 0.07788328, 0.08228051, 0.08667774, 0.09107497, 0.0954722 ,\n",
" 0.09986943, 0.10426666, 0.10866389, 0.11306112, 0.11745835,\n",
" 0.12185558, 0.12625281, 0.13065004, 0.13504727, 0.1394445 ,\n",
" 0.14384173, 0.14823895, 0.15263618, 0.15703341, 0.16143064,\n",
" 0.16582787, 0.1702251 , 0.17462233, 0.17901956, 0.18341679]),\n",
" masked_array(data =\n",
" [[-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" ..., \n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]],\n",
" mask =\n",
" [[ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" ..., \n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]],\n",
" fill_value = 1e+20),\n",
" )"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VNXWwOHfmknvFZAOglRBpQnSlCoiIEVAEFABsXfF\nei2oWOGqgBVFUQGRKtK7IAhIJyBdqiSk98zM+v6YkYt+UUI4ySSw3+eZJ5kz56y9B+OsObuKqmIY\nhmEYF8rm7QoYhmEYFweTUAzDMAxLmIRiGIZhWMIkFMMwDMMSJqEYhmEYljAJxTAMw7CESSiGYRiG\nJUxCMQzDMCxhEophGIZhCR9vV6A4xcTEaNWqVb1dDcMwjFJl06ZNCaoae67zLqmEUrVqVTZu3Ojt\nahiGYZQqInK4IOeZJi/DMAzDEiahGIZhGJYwCcUwDMOwhEkohmEYhiVMQjEMwzAsYRKKYRiGYQmT\nUAzDMAxLmIRiGIZhWMIkFMMwDMMSJqEYhmEYljAJxTAMw7CEVxOKiHQWkT0isk9ERubzemsR+VVE\nHCLS+2+vOUVki+cxp/hqbRiGYeTHa4tDiogdGAd0AI4CG0RkjqruOuu034EhwOP5hMhS1auKvKKG\nYRhGgXhzteGmwD5VPQAgIlOA7sCZhKKqhzyvubxRQcMwDKPgvNnkVQE4ctbzo55jBRUgIhtFZJ2I\n9LC2aoZhGMb58uYdiuRzTM/j+sqqelxEqgPLRGS7qu7/f4WIDAeGA1SuXLlwNTUMwzDOyZt3KEeB\nSmc9rwgcL+jFqnrc8/MAsAK4+h/O+1hVG6tq49jYc244ZhiGYRSSNxPKBqCmiFQTET+gH1Cg0Voi\nEiki/p7fY4DrOKvvxTAMwyh+XksoquoA7gcWAnHANFXdKSIvi0g3ABFpIiJHgT7ARyKy03N5HWCj\niGwFlgOj/zY6zDAMwyhmono+3RalW+PGjdXsKW8YhnF+RGSTqjY+13lmprxhGIZhCZNQLiKquWju\nVtR5HHeLomEYRvHx5rBhw0Ka+yua8gw4D3iO2FBbDPhcDj61Ed/a4FMbfC7HPQbCMAzDWiahlHLq\nykDTx0DmV2C7DAl7FXChzpPgOgF5v0HmNyg5nit8UZ/q4FPHk2TqgG9txBbpzbdhGMZFwCSUUkxz\nfkJTngfXcQgagIQ8ithCgL/OGlV1gPMQ5O1GHbshLw5y16LZs/53jq0ceO5ixLeO+27GXhn3kmuG\nYRjnZhJKKaSuFDTtdciaAfZqSNTXiN8/D8AQ8QGfGuBTA6Hr/+I4T4NjNzji0Lzd7t9zVqM4PRcG\noj5X/DXJ+NRCbMFF/RYNwyiFTEIpZTR7IZr6MrgSIfhuJOR+PHM8z5vYo8F+Hfhfd+aORjUXHHv/\ndzfj2A3ZC9CsqX9ehdor/zXJ+NZ2N7dJfqvpGIZxqTAJpZRQZ7w7keQsBJ+6SOQniG9dy8sR8QPf\neuBb76wko57+mDhw7Ebz4tx3NTkLz7owHPX0yYhPbfBrAPbLTZIxjEuISSglnKpC9kw09XXQLCTk\nMQi+ExHfYquDiIC9vPtBu/8lGlc6OH47K8nshswpKNnuE+yVUP82iF9z8G+FSECx1dkwjOJnEkoJ\npo6jaOoLkPsT+DZCwl9FfKp7u1pniC0E/K4Bv2vOuptxgvMg5G5Ac5ZB5nQ0czJICBrQGQm8xf1e\nxEyBMoyLjUkoJZCqCzIno+nvAoKE/QcC+5eKD2ER+/8GAAT1d/fJ5G5As+ZA9nw0azrYK6IBPZDA\nWxCfSucOahhGqWDW8iph1LEPTXkO8n4Fv1ZI+MuI/Xz2HSu51JUJOYvRrJmQ+zOg4NsUCewJAZ3M\n6DHDKKEKupaXuUMpIVQdkPEJmv4BSBAS/gYE9LioOrXFFgSB3ZHA7qjzBGTNQrNmoqkjIe1l1L+T\nu0nMr2mpuBszDOOvTEIpAVSz0OSHIGcF+HdGwl5A7DHerlaREvtlEHIPBI+AvM1o1gzInodmzzyr\nSawH4mN22TSM0sIkFC9TVxKadDfkbUPCXkKC+nu7SsVKRNyd+n7XoGHPQranSSxjHJrxAWqaxAyj\n1DDtCl6mqS9C3i4k4r1LLpn8nUggEtgNW9TnSOwKJOQRcJ1CU0ei8S1wJT+J5qxzD1owDKPE8WpC\nEZHOIrJHRPaJyMh8Xm8tIr+KiENEev/ttcEistfzGFx8tbaaDWzRSEBHb1ekRBH7ZUjIPUjMQiRq\nCgTcDDlL0KRBaHw7XGn/RR2/e7uahmGcxWsJRdyrDo4DbgTqAv1F5O9Tv38HhgDf/O3aKOA/QDOg\nKfAfESmVy+WKbwNwnXCvDmz8PyKC+F2DLXwUUmYNEv4O+FSBjPFoQntcpwegmd+7J1kahuFV3rxD\naQrsU9UDqpoLTAG6n32Cqh5S1W3A39s4OgGLVTVRVZOAxUDn4qi05fxbuX9mz/duPUoBd5PYzdii\nvjirSSwBTX0ajb/ONIkZhpd5M6FUAI6c9fyo51hRX1uiiE8N8G2AZk3nUpoTdKH+1yS2AImaBgHd\nTJOYYXiZNxNKfhMsCvqJWuBrRWS4iGwUkY3x8fEFrlxxksDe7hV+Hdu9XZVSx90kdhW28FeQMmuR\n8HfBp9r/msQSB7lXaDZbIhtGkfNmQjkKnL3uRkXguNXXqurHqtpYVRvHxsYWqqJFLuAmwB/NnOHt\nmpRqIgFIYFdsUROR2JVIyKPgOIImP4DGt0PTP0Jdqd6upmFctLyZUDYANUWkmrg3Oe8HzCngtQuB\njiIS6emM7+g5ViqJLRQCOkH2XFSzvV2di4LYyyEhI5DYJUjEePCpiqa/g8a3xZU2BnUleruKhnHR\n8VpCUXcbxP24E0EcME1Vd4rIyyLSDUBEmojIUaAP8JGI7PRcmwi8gjspbQBe9hwrtSSwF2gaZC/x\ndlUuKiJ2JKA9tqhJSPQs8GsJGR+i8dfjSn0Ndf7h7SoaxkXDLA5ZQqi60IT2YK+ELWqSt6tzUVPH\nPjT9I8j+AbBBYG8keKhZ+dgw/kFBF4c0M+VLCBGbe4mR3HWo85i3q3NRE58a2CLeQmIWQmBPyJqO\nJnR0Dzt27Pd29Qyj1DIJpSQJvMX9M8t0zhcH8ansHh0WuxSCbofsBWhCF1zJD7l3oDQM47yYhFKC\niL0C+F3rXtLdTM4rNmIvhy3sGSR2OQQPh5zV6OnuuJLuRnO3eLt6hlFqmIRSwkhgb3Aehdz13q7K\nJUfs0dhCH/PMwn8YcjejibfiShzsmYF/6fQ3GkZhmIRS0gR0AAlFs773dk0sU9o+iMUWhoTci8Qu\nR0KfAsc+9wz8xH5o9vJS934Mo7iY/VBKGJEANKArZM1AXf9xz1EppdYcOcwHv6xj04njRAQEUCks\nnAphYVSLiKRubBnqxMRSKSy8xO5KKbZgCL4Lgga6O+7TP0GT7wafuhAyAvw7mp0lDeMsZthwCaR5\n29DTvZGwl5Ggft6uznlLzcnmtdUrmbZrB5XCwulQvQbpuTkcSU3lWGoKR9NScXn+7kJ8/agdG0vd\nmFjqxMRSO7YMtaKjCfDx9fK7+P9U8yBrLprxETgPgv1yJORuCOiKiPluZly8Cjps2CSUEkhV0dNd\nQYKwRX/n7eqcl0X79/LCiqWczsxk2DVNeLDZtf8vOWTl5fHb6QTiEuLZFX+KuIR49iQkkJ6XC4BN\nhGoRkdSJdSeZOjFlqBsbS2xQcIm4m1F1ukeEZXwIjj1gr4gED4fAnrgXfTCMi4tJKPkoLQkFQDO+\nRNNGIRHjkIAO3q7OOcVnZvDyymXM2/sbdWJiGd2+E1eWKVvg612qHElJIS4hnriEU8TFxxOXEM+x\ntP+tvRUdGEjtmFjqxpbhyjJlubpcecqHhnotyai6IGc5mjEB8raBrSwSPBSCbkUk0Ct1MoyiYBJK\nPkpVQtE89HQvcCUiMT8itjBvVylfqsqs3XG8sno5mbl5PNCsOcOvaYyv3W5J/JTsbHYnxLPLk2h2\nx8fzW+Jpcp1OAGKDgmlWoSLda9WhdZWqlpV7PlQVctei6eMhbwPYopCgIRA0ELGFFHt9DMNqJqHk\nozQlFADN24Ge7gMBHZHwsSWiuedsx9JSeW7ZYlYePkSjy8rzeruO1IiKLvJy85xO9pxOYPPJE2w+\ncZzVvx/idFYWkQEB3FSzFr3q1KNB2XJe+ffS3I1o+gTIXQ0SBkG3I8GDEFup3FDUMACTUPJV2hIK\ngGZ8iqa9iYSORILv9HZ1AHfz1Nfbt/LmmlUo8ESLltze4GpsXkp4eU4nqw4fYvaeOBYf2E+O00GN\nyCh61a1Hj1p1KRtS/HcJmrfDnVhyFoMEQdBgJHiYuWMxSiWTUPJRKhOKKpp8P+QsQ6K+RPyaeLU+\nTpeLRxfNZ+5vu2lZqQqvtetAxbBwr9bpbKk5Ofy4dw/fx+1k04nj2ERoVbkqverUpUP1Gvj7FO9o\nLM3bi2aMh+x5YItGQh6AwD6IlLxRbIbxT0xCyUdpTCgA6kpz96doBhI9C7F7Z6MwVeXZZYuZsnM7\njzVvyb2Nm5a4ZrizHUhKZObuXcyI28mJ9HTC/P3pekVtetepR8NibhLTvG1o6hvuPhZ7NSR0JPi3\nLdH/fobxJ5NQ8lFaEwqA5u1x96f41keiJnnlG+6krb/y0srl3Nu4GY+3aFns5ReW0+Xi56NHmB63\ng0X795HtcHB5ZBS96tTjltrF1ySmqpCzDE170z2Pxa8lEvo04luzWMo3jMIqaEIxs7FKCfGtBeGj\n0JTH0bS3kbCni78OuL9Nd72iVrGXfSHsNhstK1ehZeUqpObkMH/vHqbH7eTNtat5++efaFW5Cr3q\n1CvyJjERgYB24N8KMr9B0z9AT3dDg/oiIQ8itqgiK9swioNX140Qkc4iskdE9onIyHxe9xeRqZ7X\n14tIVc/xqiKSJSJbPI8Pi7vu3iCB3SBoAGR+jmYvKPbyu9SshV2EOXt2F3vZVgnz96dv/QZ816c/\nSwfdyb2Nm/Hb6dM8uGAezT77kOeWL2HLyRNFul6XiB8SPASJXQxB/SFzKhrfAc2YiGpukZVrGEXN\na01eImIHfgM6AEdxb+XbX1V3nXXOvUADVR0hIv2AW1S1ryex/KCq9c+nzNLc5PUn1Vw0cSA49iLR\n0xGfy4u1/DvnzGBPQjyrhgzDbrs41rFyqfLz0d+ZvmsnC/fvJdvhoF5sGQY2uIpuV9Qm0LdomxfV\nsQ9Nfd091Nhe1b0gpf8Npn/FKDFKw46NTYF9qnpA3V/LpgDd/3ZOd+DP/XCnA+3kEv+/TMQPiXgP\nxB9Nuh91ZRRr+b3r1OdEejo//X64WMstSjYRrqtUhTGdurD+rhGMur49eS4XTy9dRIuJH/PW2tWc\nzswssvLFpwa2qM+QyE8AG5p8D5o0GM0rvXeCxqXJmwmlAnDkrOdHPcfyPUdVHUAK8OfMuWoisllE\nVopIq6KubEki9nJI+BhwHkRTny3W5dTbVatOZEAA0+N2FFuZxSnU35/brmzI/NsGMaVXX5pXrMSH\nG3+h9Ref8Mqq5ZxMTyuyssW/DRIzFwl9HvJ2o6d74Ep5HnWeLrIyDcNK3kwo+d1p/P2T8Z/OOQFU\nVtWrgUeBb0Qk37VJRGS4iGwUkY3x8fEXVOGSRPybIyGPQPaPkPllsZXr7+ND91p1WLx/P8nZWcVW\nbnETEZpWqMj4m7qxaOAQutSsxZdbN9P2i894dtlifk9JLqJyfZHg25HYRe5tibO+RxM6uJfON/0r\nRgnnzYRyFKh01vOKwPF/Okfc64OHA4mqmqOqpwFUdROwH7giv0JU9WNVbayqjWNjvTN/o8gEDwf/\ndmjaG2juhmIrtnfd+uS6nMzec2nsu355VDRvdejMskF30btefb7ftZN2X07ksUXz2Z9YNHcPYovA\nFvYsEjMX/Bqj6W+hCTei2YvMBl9GieXNhLIBqCki1cS95nc/YM7fzpkDDPb83htYpqoqIrGeTn1E\npDpQEzhQTPUuMUQECX8T7BXR5IdQ5x/FUm7d2DLUiy3D9F07i6W8kqJSeDijrm/PiiF3MbjhNSzY\n9xsdJ3/BvfPmsPNU0fzbi8/l2CI/RiInggSgyfe7d4/M23Xuiw2jmHktoXj6RO4HFgJxwDRV3Ski\nL4tIN89pnwHRIrIPd9PWn0OLWwPbRGQr7s76EaqaWLzvoGQQWygSMQ40E026G3WlFEu5ferWZ2f8\nKXbFnyqW8kqSciGhPNe6LauGDOPeJs346chhbp4ymbvmzOTXE3+/ybaG+LdEomcjYS9C3h709C24\nUp5BnRdPM65R+pmZ8hcJzVmJJt0LPrXca34V8SKEydlZXPvpR9x2ZQNeaHNDkZZV0qXmZPPl1i18\nvmUTSdnZtKxUhYnde+LzL8OqXaocT0st1Dpo6kpF08dB5lcg/kjwCAgegoj/hbwNw/hHpWHYsGEh\n8W+DRHwAjjg0+V7UVXTDXAEiAgLpcPnlzNoTR2pOTpGWVdKF+Qdwf9NrWTVkGM+0bMMV0TH/mkxU\nlbj4Uzyy8EceWfgjx1JT//Hc/IgtDFvY00jMPPC7Fk1/x9O/ssD0rxheZRLKRUQCrkfCR0PuL2jS\nnair6Ia4Agy7pgkp2dm8tXZ1kZZTWgT7+TH0msY817rtv54nIlSLjGLCTd2pF1uGJ5csOO+kAiA+\n1bBFTkAivwAJRpMfRBMHoHkX55Buo+QzCeUiI4HdkYixkLcNTRyMupKKrKwGZcsx+Kpr+Hr7Vn45\ndrTIyrkYBfn6EhMUxNBrGpOV5+BkRuGTv/i3cK9CHfYyOA+gp3vhShlZbIM0DONPJqFchCSgs7uj\n3vEbmjiwSDtuH7v2OqqER/DQgnnEZxbvrP3SKs+zfTHAvN/2UCY4mHLBoWeOFabZSsSOBPVDYhZD\n8F2QNRdN6ISmT0D10m6SNIqPSSgXKQm43r2Uh/OYuxnEWTSjj4L9/Bh/UzdScrJ5cP4POFyuIinn\nYpKWm8Mvx47y1JKFvLtuDb3r1iMmKOjM6yJCfEYG38ft5FDy+d1hii0UW+iTSMx88LsOTR+DJnRB\nc1ZY/C4M4/8zo7wucpq7GU0aChLq3kfFp0qRlDMzbhePLZ7P8GsaM7JlmyIpo7T77XQC3+7YRkJm\nBgE+vtSNLUPH6jWoEBaGS/XMFsqzdsex+MA+/Ox2fj76Ow80bc6AKxsWqkzNWYOmvgLOA+DfGQl7\nDrGXsfJtGZcAM8rLAED8rkaivnTPU0m8Dc3bWyTl3FKnLgOubMjHv25kwb6iKaM0c6kyZ89uvty6\nmaoRkbzVoTN3XHUNFcLCzrwOsOzgAVYcPkC3WrUZ06kLn918C4eTk3AW8s5P/K9DYua4l+nJWe6+\nW8maYUaDGUXCJJRLgPjWQ6K/AcQzCqhoZrg/16otDcuW48nFCziQdEnOM/1HNhEeb9GSqb37sePU\nHwyaOf0v64H52GyoKt/H7aRFxcq0qFgZgLiEeLb+cfLMVgE7Tv1x3gMgRPyQkHuQmDngUwNNGYkm\nDUOdJ6x7g4aBafK6pKjjdzRxMGgKEvkp4neN5WUcT0vl5m+/IjYomBl9BxBUxHuJFMbx/Sf5ec5G\n/IP8qVSrPJXrVCCybESx1mHOnjgiAwNB4ZrLyhPs58eygwdYfGAf9zRuSuVwd30GzZzO7Q2uonWV\nqryxZhX7EhM5lZHO5VHRvN2h83nv1aLqgszJaPo7gM29t33grWbvFeNfmS2Ajf9HfCpD9Ndo4hA0\n6Q6ImID4t7C0jPKhYfy3c1cGz5rOU0sW8F7nriXqw2r3L3t5pNXzOPKcfzkeUSac6g2rUKNhVape\nWZnYitFElosgqlwEIRHBlr+HbrXqoKqsOHyQNUcO0/Hymoi471TC/QMAmLxtCxXDwqgYHs6X2zaT\n63IxtnMXogKDGD53FgeSEqlXpux5lStig+BB4N8WTX0OTX0esudD2CjEp6Kl79G49JiEcokRe3mI\n+hpNugNNGg4R7yMB11taRsvKVXjyula8sWY1tWN+4b4mzSyNX1iqyviHPycsOpSxa0Zht9s4suc4\nh3cd5cDWw+zfeoiZ7/1IXq7jL9ddVr0sLbo34boeTanb4grsdrsl9RERrq9a/Uz/SY7DSVJWFuEB\nAZxIS2Pyti28fH17DiQmkpCZSafLaxAVGMTJ9DSOp6US7RkZlpqTw+6EeJpWKHhCEJ/KEPkFZE1F\n095ET3eFkMch6DZ30jGMQjBNXpcodSWhiXeBYzcS8Q4ScKO18VV5dNF8Zu+J492OXehRu46l8Qtj\n5bS1jOo3hscn3kunIfknUUeeg2P7TpJ4Iomkk8mcPp7E5uU72LJ0O3m5DiLLhtNuQGs6DmlLtfqV\nLa3fsbRUnlqykJTsbKpGRFAhNIyRLdswYeN6bCLcdXVjfGw2Zu2OIy7hFPc1acamE8eZtGUzeS4X\npzMzeKNDZxqWLXde5arzOJryHOT+BL5NkPDXimw0oFE6FbTJyySUS5i60tGkYZC3GQl7DQnqaWn8\nbEced86eyfpjR3i7w43cUqeupfHP18OtniP5VCoT48Zi+5e1tvKTkZrJhvmbWTF1Det++BWnw0nN\nRtXpOLgtN/RvSVh06LmDFNDqw4eoGR1NuRB3zH7TpzK8URNuqFadg8lJfL9rJ9FBQbSpUpWnly6i\nf/2G9Khdh3Eb1pHrdPLItdedd5mqClkz0LTXQPOQ0IchaDCeXSKMS5wZNmyck9hCkMjPwK85mjoS\nzZhsafwAH18+63YL11aszBNLFjBrt/f28Ni/9RA71+zh5hEdzzuZAASHBdG273W8OONJphz7iHvH\n3oHL6WLcgxPpW34YL/V+m/U//orLgomdrapUPZNMErMyCfT14bpK7ruh73buQAQali3HsoMHuDwy\nih616+BSxc9uJ9jXDzj/2fYiggT1QmJ+BP8WaNpo9zBzx/4Lfj/GpcMklEuc2IKQyA89Oz++jKZ/\nYmn8QF9fPr25B80qVOKxRfP5dsc2S+MXRG5OHu8MnUBweBAdBl/4pMuI2HBuebALH/76Fh9ufovu\n93Vmx+o4nuv6OkOueJDv3p5DaqI1C3NGBATSoGw52kz6lMcWzWfD8aP0q9+AssEhLDqwjzuuagRA\nSnY2OQ7nmf6Ywg4iEHtZJGICEv42OA6iCd3R9I9xb19kGP/ONHkZAKjmoSlPQvY8CL4PCXnQ0pFN\n2Y487vvxB5YfOsAzLdsw9Jpz3j1b5oMHPmP2uAW8NOtJWnRrUiRlOPIcrJn5C7PHLWD76jj8A/24\ncWg7bn2iO7EVoy84/tY/TpKak03dmDJEBwUxes0qTqanMbbTTeQ4HGw7dZIJG3/h6evaUDM6GlW9\n4P9+6oxHU1+CnEXgUx8Jfx3xrXXB78UofUpFk5eIdBaRPSKyT0RG5vO6v4hM9by+XkSqnvXa057j\ne0SkU3HW+2Ik4uv+VhrYGzLGoWmvWzqbOsDHlwk3daNLjSt47aeVvLf+52KZre1yufjx06V0GnJ9\nkSUTAB9fH9rc2oJ3V77Mx1vfpk3fFsydsIhBl9/HmOEfcnz/yQuK37BsOVpVrnpmZFeF0DCaVagE\nwLZTJ1m0fx/XlCtvWTIBEHsstsgPkIj/gus4eronmv4BqnkXHNu4OHktoXj2hB8H3AjUBfqLyN97\nbe8CklS1BjAGeMNzbV3ce9DXAzoD48X0Hl4wETsSNgqCBkHmF2jq86g6z31hAfnZ7YztfBO96tRj\n7Pq1jF6zqsiTSkp8Knk5edRsVL1IyzlbtSur8MTE+5i0931uHNqexV+t4o5aDzJ60Hsc3nXEkjJq\nRccwZt0anlyygPfXr6NcSCiDGl4NFL65659IwI3uvpWATmj6e+jpXmZPeyNf3rxDaQrsU9UDqpoL\nTAG6/+2c7sAkz+/TgXbi/r+lOzBFVXNU9SCwzxPPuEAiNiT0WQgeAVnT0JSnLG0/97HZeKN9J25v\ncBWf/LqRF1YsPdPuXxRysnIBSDhW/EvBlK0Sy4PjhvLVgXH0fLgra2b8wrArH+PlPm9zYNvhC4rd\ntEJFFg4YwpVlyvFY8+u46+pGhPn7F1mCFlsUtoh3kYjx4Drt3nMlbQzu/3UNw82bCaUCcPbXtaOe\nY/meo+5PtRQguoDXGoUkIthCH0VCHoXsOWjyQ5Z+cNhEeLHNDQxv1ISvt2/lycULimzZ+3JVy9Bu\nQCumvzOHw3He2QQs+rJI7n57EJMPjaf/07ewafE27r7qcV7q/Tb7tx4qdNzIwEBub3AVDctddubY\n3+9OdsWf4se9ewpdxt9JQHvP3Uo3yJiAnu6B5m61LL5RunkzoeR3X/73r1f/dE5BrnUHEBkuIhtF\nZGN8fNFtNHUxkpARSOhzkLMYTboH1SzrYovwVItWPHJtC2bs3sVDC+aR67Suee1sd78zmMDQQMYM\n/xBnEZVREOExYdwxqj+TD45n4PO9+XXJNkZc/QSjB71H/NHTRVLm51t+5f75P3DPvDmWbYAmtnBs\nEW+499txpaOJfXGlvYlqtiXxjdLLmwnlKFDprOcVgb/vAnXmHBHxAcKBxAJeC4CqfqyqjVW1cWxs\nrEVVv3RI8CAk7DXI/QlNHIq60q2LLcIDTZvzbKu2zN/3GyPmzSbbYX2Hb2SZcO4ZM4Sda/bwxXNT\nLI9/vkIjQxj8Ul8mHxxPv6d6sOq7ddxR60G+euk7sjOt3V3x9XYdebJFK5YfOkCnyV8wa3ecZc1i\n4t/GfbcS2BsyPkUTuqG5ZhTlJU1VvfLAvY7YAaAa4AdsBer97Zz7gA89v/cDpnl+r+c5399z/QHA\nfq4yGzVqpEbhuDLnqvNEHXUm9FKXM8ny+N9s36rV//u23vb9VE3PybE8vqrqmOEfanvprcu+/alI\n4hfWiYN/6Ct939H20lv7V7pbl0xepU6n09Iy9p5O0J5Tv9Zq/31bh86ZoSfSUi2N78r+SZ1/tFXn\niSvUmTJKXc4MS+Mb3gVs1AJ8rnt1HoqIdAHGAnZgoqq+KiIveyo/R0QCgK+Aq3HfmfRT1QOea58F\n7gQcwMOqOv9c5Zl5KBdGs5eiyQ+CT3Uk8nPEHmNp/Fm7d/HE4gU0LFuOid17EuZZddcquTl5PNXh\nZfZs2M8Z3oBUAAAgAElEQVTby/5D3eYla07F9tVxTHj0C/ZuOkDtpjW4Z8wQS+vodLn4fMuvvLtu\nDb42O8+1bkvvOvUsGxWmrgw0/W3I/BrsldzL+fiXjIVBjQtj1vLKh0koF05z1qDJ94KtHBL5IeJT\nzdL4C/fv5cH5P1AzKppJPXqfmXdhlZSEVB5s/gyZqVm8ufQ/li/weKFcLhdLvlrFZ898Q+KJJG64\nrSVDRw+0ZHLknw4mJzFyyUI2HD9G68pVebVdByqEhlkWX3M3oCnPgPMwBA1AQp/C/d3QKK1MQsmH\nSSjW0NyNaNK9gAMJf8fy5e9XHjrIiHlzqBQWxle39KFsSIil8Y/sOcbj179IdmYOz097jMYdC7df\ne1HKSs9i6huzmfb2HOx2G/2evoU+j92MX4CfJfFdqkzetoU3167GhjCyZWv61W9wZl/7C6WahaaN\ngcwvwOcKJHwM4lvTkthG8TMJJR8moVhHncfQpPvAEeferzx4uKX7aKw/eoShc2cSHRjE5J59qBgW\nbllsgFO/x/PczaM5vOsoD44byk3DO1ga3yonD53i4ye+ZPX366lUqzyPfjKC+i2t2wrgaGoKTy9d\nxJojv9O8YiVeb9fxzG6RVtCcVWjKU+DKQMJetHxFa6N4mISSD5NQrKWa5W7ayJ4H/u2Q8NGIzboP\n/i0nT3DH7BkE+PjwZY/e1Iy2rtkHIDMti1H9xrBh/maGv3k7fR7vZml8K21ctJWxd3/Eqd8T6H5/\nZ+587TYCg61pRlJVpu3czqurV+JUF0+0aMWghldbd7fiPIWmPA656yCwDxL2vGkCK2VMQsmHSSjW\nU1XI/ApNGw32ckjEB4ivdfue7E6IZ/Cs78lzOfm8W8+/TOKzgiPPwejb32PltJ+577930uMBazca\ns1JWehafjvyaOeMXcln1sjz26T00bFvPsvjH01J5dtliVh4+RJPyFXi7w41UCrfmC4KqA01/DzI+\nBJ+6SMR77l0jjVKhVCwOaZR+IuKeqxL1DagDPX0rmvmdZfFrx8QyrXc/Qv386fv9VKbt3G5ZbHAv\n6jjyqwdp0b0J4x6ayMIvllsa30qBIYE88MFQ3lnxEiLw+A0v8t69n5CZZs2E0/KhYUzs1pM323ci\nLiGert9+xaL9ey2JLeLjXn0h4iNwHkVP34JmL7UktlFymDsUwzLqSkSTH4PcNRDYEwn7DyKBlsQ+\nnZnJQwvnsfbI7/SpW5+X2t5AgI+vJbHBPaT4+W6j2bJ0O89OeYTWvZtbFrsoZGfm8MXzU5gxdh6x\nlaJ55OMRlg4uOJKSwn3z57Lj1B8Mu6Yxjzdvia/dmvVX1XEETX4IHDsgeBgS8gjuectGSWWavPJh\nEkrRU3Wi6R9Axnj36J6I9xGfqpbEdrpcjF2/lnEb1lM3JpbxN3WztAM5KyObpzuPYvf6fTw56X5u\n6N/SsthFZdfPe3j7rgkc2X2Mm4a15+53BhEYYk0Sz3E4eHX1CiZv30qT8hV4r3NXy0bcqeagqa9C\n1hTwbYpEjEHsZiWLksoklHyYhFJ8NGcVmvw47qHFryMB1m1Zs+zgAR5bNB+XKu907Ez76jUsi52R\nmsnz3UazY/VuHpowrMSO/jpbbnYuk16YynfvzKVs1ViemnS/pSPBZu+J45mliwj28+O9zl25tmKl\nc19UQJo1C015AWxh7qTiV3R71hiFZ/pQDK8S/9ZIzEzwqYYmP4ArdbRlGzPdUK06c/sPpEpEBMN/\nmM0ba1ZZtlpxcFgQr89/liY3XsXYER8z8dlvvLqgZEH4Bfgx7M3beXflS4gIj7X9D1+P+t6S/e0B\nuteqw6y+Awn3D2DgzO8Yv2G9ZVsOSGAPJPo7kCA0cRCa8WmxbLxmFA1zh2IUKdVcNO1193Icvo2Q\niLGIvawlsXMcDl5etZxvd2yjWYWKvNe5K7HBwZbEzsvN4717P2XBxGVcdUN9nvnmYSLLWDsXpihk\npmXx3r2fsPTr1TS58WpGfvkAYdGhlsTOyM3l6aWL+GHvHm6oWp13Ot5IeIBFQ5dd6e4h6DkLwL+9\nZwi6dbP3jQtjmrzyYRKK92jWXDT1OZAg96xp/2stiz0zbhfPLl9MqJ8/79/YlaYVKloWe8HEZbx/\n/6eERoXw3NRHqX9dbctiFxVV5YePFjPh4c+JLBfBC989Rq0m1jQLqipfbtvMa6tXUi4klHFdbqZ+\nGWu+ILiHoE9C094Ee3n30GILh6AbhWdpk5eIBIjIoyIyQ0S+F5FHxMxMMs6DBN6MRH8PEo4mDUHT\nP0TVmiaZW+rUZWbfAYT4+TFgxjQ+3rTBsmaTznfewH/Xvop/oB+PX/8i34/5ocQ3yYgIN4/oyJjV\nryAiPNLqeeZOWGhJvUWEwQ2vYUqvvjhcTnp/9y3f7thmWWwJHoJEfQWajZ7ui2ZOv+C4RvEp0B2K\niEwD0oDJnkP9gUhV7VOEdbOcuUPxPnWlu+9Usn8E/+uR8Dctm12flpPDU0sWsmD/XjpWr8GbHTpZ\ntmJxenIGb985jjWzNjD4pb4MfL63JXGLWurpNEYPep8N8zfTbkArHvpwuGUz7BOzMnlk4Y+s/v0w\nPWvX5ZXr2xPoa81QbnWeRlMehdyfIbA3EvaCmV3vRZY2eYnIVlVteK5jJZ1JKCWDu2ljsmd2fVlP\n00Z9y2J/vuVXRq9ZRYXQMMZ1uZm6sWUsiz37gwW06n0t0ZdF/uN5+7YcxJnntKyZ6UK5XC6+fW0m\nk/4zlSp1K/LC9MeoVMuaHbOdLhfv/7KO93/5mVoxsYzrcjPVIv753+Z8uIegvwcZE8CntmcIehVL\nYhvnx+pRXptF5Eyjt4g0A9YUtnLGpc3dtHE7EvU1qBM93Q/NnGJZs8mdVzfim563ku1w0Gvat5bN\nrhcRejxw478mE6fTycYFW3ihx5u8f/+nJWKEmM1mY8BzvXh9wbMk/ZHM/U2fZvX36yyJbbfZePja\nFkzs1pM/0tPo/u1k5u/7zZLYInZsoY94ZtefQE/3RLOXWBLbKBr/mlBEZLuIbAOaAWtF5JCIHAR+\nBloXRwWNi5f4XeUeWuzXFE19AU15yrJ96xuXr8Dc/rfTqHx5Ri5dxFNLFhbJ9sJ/Z7fb6TfyFlr1\nbEZmWhZ2i2aXW6FRh4aM3/QmVepV5JVb3+XHT61b+qRN1WrM6X87NaKiue/Huby6egV5FiVTCbge\niZ4J9ipo8r240t5C1WFJbMNa57pD6QrcDHTGvdVuG6Ct5/ebCluoiESJyGIR2ev5me9XPhEZ7Dln\nr4gMPuv4ChHZIyJbPA9r2jSMYie2KCTyEwi+H7Jno+kfWxY7JiiISd17cX+Ta/lu1w56T/uWw8nJ\nlsX/J7t+3sP21XHc+eptACXiLuVPZSrF8PayF2ncqSFjhn/I3AkLLYtdITSMKb37MqjBVXy2eRO3\nzZjGyfQ0S2KLT0UkegoE9oeMT9DEwajzlCWxDet4ZdiwiLwJJKrqaBEZibuD/6m/nRMFbAQaAwps\nAhqpapKIrAAeV9Xz6hAxfSglm+asB78G51z/S7Png+MQEnJPgWMvP3SARxfOx6kuRrfrRJeaV1xo\ndfPldDgZ1W8MNa6qxoDneuFyubDZ/vq9LS83D18/69YhK4zcnDxeufUd1s3dxKOfjODGu9pZGn/u\nb7t5eukiAn18GX/TzTQpb91Qbs2ajaa+ABLimV3f1LLYRv5K+kz57sAkz++TgB75nNMJWKyqiaqa\nBCzGfadkXKTEv1nBFpP0qYvmbcGVOAh1Hi9Q7OurumfX14iM5v75c3lh+RJyHNY3m6yYupaEY4kM\neK4X4O53+XPGelZ6Fjt+iuP9+z7jkye/Ijen6Jvg/omfvy8vfPcYjTs1ZOzdH7Fm1i+Wxr/5itrM\nvHUAof7+DJjxHZO3bbFsuLUEdkeivgMJcc+uT/+4xA/lvlR4K6GUVdUTAJ6f+TVZVQCOnPX8qOfY\nnz73NHc9L2LRTkBGifbnh4b4VMEW+RH4NoKsGQW+vmJYOFN692Xo1Y2YvH0r3ad+zfZTf1xwvZxO\nJ8u+WU12Zg6LJi2n9yNdzxwXkTN3KNPf+YEfPl5MnWtrknQqhbF3f3TBZV8IXz9fXpj+OFc0qcGr\n/cey/sdfLY1fMzqaWX1vo1XlqrywYikvrFhq3ZItvle45zUFdELT30aT70VdqZbENgqvyBKKiCwR\nkR35PLoXNEQ+x/78axygqlcCrTyP2/+lHsNFZKOIbIyPjz+/N2GUKCKC5u3Glfq6+4BjH3/+CRf0\nG6qf3c4zrdryWbdbSM7OoufUr3lr7eoLulvJzshh1fSf6XvZMBKOJdLm1haAe3TVn/0nS79ezbF9\nJ7jlwZu48a52PPrJCDJSMkk6lVLocq0QGBzAq/Oepmq9irx4y5uWjf76U5h/AJ/c3IPhjZrw9fat\nPLF4gWXrroktBAkfi4Q+Czkr3aPA8nZZEtsonCJLKKraXlXr5/OYDfwhIpcBeH7m17t2FDh7WdOK\nwHFP7GOen2nAN8A/NqKq6seq2lhVG8fGmuWxS6O/JAt7Rcjbiut0P7AFg797NWAROa9mj+urVmfR\nwCH0rFOPCRt/4eZvv+LXEwVrPvu74LAgXpzxJM988xA5mbnM/XAR6ckZiAh2u52s9CxWf/8zzbs1\noVp995/0ws+Xk5GSSWSZcJwOJ4smreDz577l9ImkQtXhQoRFhfLW0v9wRZMajOr7LvM/s3bjK5sI\nI69rzWPNWzJz9y4emP+DZc2N7iHogz1D0HPcG7xlzbYktnH+vNXkNQf4c9TWYCC/v4CFQEcRifSM\nAusILBQRHxGJARARX9wj0XYUQ50Nb3GdOjNM1P2t9C33hMiwlxDfmmedmIc6/0Azp6LOczdlhfkH\n8Eb7TnzRvRcZeXn0+e5bXl29gqy8wvVtNLupEZMPjqfOtTVZMXUtmxZvBWD3L/uIrRjDFY2q4xfg\nR3ZmDmtm/ULfJ7tz9LfjjL37I9bO2YAjz8kzXV7l5KHiH70UHB7M6IXPcXX7Brw77EMmPvuN5f0S\n9zVpxvOtr2fh/r2MmDe70P/O+RG/q5GY2eB3NZryBK60MZYt7WMUnLcSymigg4jsBTp4niMijUXk\nUwBVTQReATZ4Hi97jvnjTizbgC3AMeCT4n8LRrHJWYomDUNdie7nuWvBXgkR/7/MR9D08Wj6GDR3\nrXuyZPbiAoVvXaUqCwYMpv+VDfls8yZu+vYrfjl2tNDVrXFVNdrf3prwGPdquf5B/pw6ksBl1d2L\nKE59YxaValUgLCaMFVPXEl0+iqcm3c+wNwZSrmoZDm7/vdBlX4jA4ABGzR3JjXe149vXZ/LGoPct\nH/J8x1XX8Hq7jqw6fIg7Zs8gLSfHstjuIeifQWAfyJiAJj+EqnXxjXPzyr6bqnoa+H/jFD3DgIee\n9XwiMPFv52QAjYq6jkbJIUG3gSsVTRyI+tQDVxIS2MXzDdo9cVAzPgXHHiTkIcS3tntfe2fBP5hD\n/f0ZdX17bqpxBSOXLqLf91MZ1OAqnmjRimA/v/Ouc0CQPzWurgaAy+kiJSGVg9sPk3A8iWXfrObl\nOSPZv/kgmamZtOjRlMCQQE4c+IO8nDyqeprFDu74nV1r91C/ZW2q1LVuU6t/4+PrwyMf303ZqrF8\n8fwUYitGc9frAywto2+9Kwn08eGxRfMZNGs6X3TvZdky+CJ+EDYKfGqgaaPRpGEQMQGxWbOtgfHv\nzAZbRqkgISPca34FtEfCXwf/Du72cxHUsQ/NmoGE3If4epaX1wzUceDM9eoq2AS75pUqM3/AYIY0\nvJqvtm3hxm8msfbIhd0x1L+uNp2GXM8rt77LxgVbGPRiX6rUqciJg6eILBtxZkn8rSt3Ue3KKth9\n7CyZvIp3h07g0M4jvND9DZZ+vfqC6nA+RIQBz/bipuEdmPLGLJZPsX6VpW616jC+Szfi4uPpP2Ma\nCZmZlsV296vcgYS/Abkb0KQ7zQiwYmL2QzFKHXWeRDO/RoIGIvayuFJfQ2wxSMhw9+uuVDShCxI5\nAfG9Es2YhOZuAhQJf7XAGzdtOH6Up5Ys4lByEv3rN2Dkda0J9fcvdL3/Psnx7qse596xd9CwbT1+\n27SflVPXUrZqGeq2uILxD33Obc/2onHHhiyatIL9Ww5xz5ghhS67MPJy83iy/cvs23yQj7e+c6bJ\nzkqrDx/i7nmzKR8aylc9+nBZqDWbgf1JsxeiyY+CT00kaiJii7I0/qWipE9sNIxCE3s5JGgwiOfD\nXXzBp9qZ1zX1eQjsCbZy7q2H87YhIfeBvYK7j6WAX6KalK/Ij7fdzrBrGjN153Y6fz2JlYcOFrre\nZyeTrIxsLr+6KjlZuQBMGT2ToPAgrmxVm7WzNlCnWU0ad2xIbk4eeTl5hMWEFvsSLr5+vjw9+UFs\ndhtv3TnOsi2Fz9aqSlW+6N6LU+kZ9P1+Cr+nWLs0jgR0QiLHg2O/u8m0AIM1jMIzCcUolcQeg9gi\n3E+cf4DzJACaMREcB5Dg4WjmZMQWjAQPR3xrIYE9IW8vUPCO2gAfX55u2YbpffoT4ufHHXNm8MTi\nBaRkZ19Q/QODA2g/sA3v3/cJz3cfTXB4MAOe7YXd14d18zbR61H35MjM1Ez+OByPzWbzykKTZSrH\ncu/YO9i+Ko7l3xbNAuNNK1Tkq559SMvJpd/0qexPPG1pfPFvg0R+Cs7jaOIA1HnM0vjG/5gmL6PU\n07xt7v3IbeXAFoYE3wPkolnfIQFdzqz15Ep9CSQMW+gj7oUFnYdBcxH/6wpUTo7Dwfu/rOOjTb8Q\nHRTEqOvb0776he95knDsNJHlIrDb7Yx7aCLqUu5//y6y0rPYvno3sz6Yz8MThlGmsnfmUblcLu6s\n8zARZcIYu3pUkZWzOyGeQbOmu7cZ7tGbOhbtY/Mnzd2CJg0FCUaivkDOuqs1/p1p8jIuGeLbAFvM\nD0jYM0j46+65KY79gD/4uBeB1OyloA7EvxXq2I8mDUWzfkBTn/csh37uL1b+Pj483qIlM/oOICow\niOE/zOahBfNIzLqwDuWYCtFn7j6ubFWHwBD3iKd1P/zKurkbad61EWUqx3ptvSqbzUaXoe3YuWYP\nJw4UXZNR7ZhYpvTqi5/dTv8Z09hy8oSl8cXvKiTqSyDHfaeSZ82+Lcb/mIRiXDTEpzri6VdRxx7E\nXgaxRaCO39HshYjvVe7Z1FkzwL81tvCXkJgFkLcbtOAz1K8sU5ZZfQfwULPmLNj3G50mf8G83/ZY\n8oFfs1F1Ni7ayiOtn2fZN6tpeH19ugxv735/XlyyzsfPPcMgILjwgxIKonpkFFN79yPCP4DbZ37H\n+qNHzn3ReRDfukjUZMDm7lPJs2bzNcPNJBTjoiQ+ddDM79CsuWjyw+6tY33rg+MAaI6nWQzIWQ3i\nf96jf/zsdh5q1oLZ/QZSPjSMBxb8wPAfZnEw+cKWTrmsWlkmbHqTYW8M5NFPRtCmT3Psdnu+ycqR\n52DflsIPEjgf+7ceIqJMOJFlI4q8rIph4Uzt3Y/LQkIZMnvGBQ2EyI/41ECivgGbZ7XiXNMMbhWT\nUIyLkgR2RUIfQR2/IUF93aO8bBFo7s/ukT+2YPfMe9dJ8KmFauE62WvHxPL9rbcx8rrWrDt6hM6T\nv+C11StIzbmwTvu6zWv95cM7v7uTFVPXcs81T/JE+5dYPmUNudm5F1TmP8nJyuHn2Ru46ob6RRI/\nP2VDQvi2V19qREUx/IdZLNi319L44lPZk1TKoIl3ojlmR3MrmIRiXLQkoBO20MeQoL7uA9lzAUX8\nmriXbMndiubtRvwaIlL4mdo+NhvDGzVh2aC7uKV2XT7bvIkbJk1k8rYtlq2sm59ruzZi2BsDOb7v\nJK/dNpa+5YczdsTH7Fr3m6X9LcunrCUtKYObhrW3LGZBRAcF8XXPPlxZpiwPzJ/LrN1xlsYXezn3\nopI+VdCk4e5+NuOCmFFexiVDc1ahWT9gi3gTzZyOOva7hx8H32VpOTtP/cGo1StYf+woV0RF82zr\ntrSqXNXSMs7mcrnYsnwni79cwerp68jJyqVSrfJ0HNyWdgNbE1sxutCxd637jafav0ylOhUY98to\nr/TjZOTmMmzuLH45fpQxnbpw8xW1LY2vrmT36K+8nUj4W0hgV0vjXwwKOsrLJBTjkqGagybdB5oO\n2JCQe8G3IWKzdna2uyxl4f59vP7TSo6kpnBD1eo806oN1SOLdqZ2Rmomq6evY9GkFWxf7f5GX79l\nbdr0aUGbW5ufVx9Ibk4eI65+grycPP67ZhRR5SKLqtrnlJmXx52zZ7DpxDHeu7ErN9awdgtndaWj\nSXdD3kYkbBQS1MfS+KWdSSj5MAnFAFDHfrBFFssyHDkOB19s/ZVxv6wn2+lgYIOreLDptUQEFGCr\n4wt0bN8Jln+7hpXfreXQjiOICKFRIYTHhBIWE0r5y8tRq0kNajetQfWGVf6yz/2RPcd47bb/sm/z\nQV6a9SQtujUp8vqeS3puLnfM/p7tp/5gep/+1C9j7VIwqllo0v2QuxoJfQ4JHmRp/NLMJJR8mIRi\nFISqExFrZ6XHZ2Ywdt1apu7cTpi/Pw83a0H/+g3wLabZ7wd3/M7a2Rs4fTyJlIRUUuJTObzrKMme\nHSN9fO1UqVeJ6g2rEF0uklnvz8cv0I/HJ95L85vP+TlSbE5nZtJtylfYbTZm9x1IZKC1iVk1F01+\nBHIWIyGPIiEjLI1fWpmEkg+TUIxzUVU0+R6wV0ZCHkZsQZbGj0uIZ9SqFfx89Hcuj4zi2VZtaVvV\nOzO2VZX4Iwns/mUfezbs58C2QxzYepjEk8lc3e5Knpx0PzHlS95iiltPnqDv9Kk0r1SJz7r1xGZx\nv46qA00ZCdlzIHgEEvKIV+cAlQQmoeTDJBTjXFRz0bTXIPMbd1IJexXxb2ZxGcqSA/t57aeVHE5J\npk2Vajzbqg01ogrfeW6ljNRMgkIDS/SH6Nfbt/L88iU81Kw5DzVrYXl8VSea+h/ImgZBg5DQZxC5\ndAfFluilV0QkSkQWi8hez898e/tEZIGIJIvID387Xk1E1nuunyoi578DkmHkQ8QPW9iLntnUoEm3\n40r5j6X7aYgIHS6vwcKBQ3imZRt+PXGcG7+exIsrlpKUlWVZOYUVHBZUopMJwG31G9Czdl3eW/+z\n5RMfAUTsSNgrEDQEMr9EU59DtXhXey6NvJVyRwJLVbUmsNTzPD9vAbfnc/wNYIzn+iTA2nGfxiVP\n/Joi0XPcHyhZU9GEG9Hs+ZbO7/Cz2xl6TWOWDbqT/vUbMHn7Vm74ciKfb/mVvGJeqr60ERFeub49\ntWJieXjhjxxNTSmSMiT0aQi+F7KmoymPo5pneTkXE28llO7AJM/vk4Ae+Z2kqkuBv2y1J+6vTjcA\n0891vWFcCLEFYQt7Bome7p5RnfwQmjz8LztBWiE6KIiXr2/PvNsGcWWZsryyajk3fjOJpQf2e21B\nyNIg0NeXCV264VLl3h/nkuNwWF6GiGALfRgJeQKy56HJD5p96v+FtxJKWVU9AeD5eT7rVEcDyar6\n51/PUaCCxfUzjDPEtz4S/Z3722ruRjShK67U11CXtd+Ka0XHMKlHLz69+RZUYdgPs+g17VtWHjpo\nEss/qBIRwTsdO7Pj1B+89tPKIitHQoYhoS9AzlI0aQSq3m+aLImKLKGIyBIR2ZHPo/uFhs7n2D/+\n3yYiw0Vko4hsjI+Pv8CijUuViI97n/KYxRDYy92uHt8BzfjK0mYQEeGGatVZMGAwr93QgVOZ6dwx\nZwa9pn3LsoMHTGLJR/vqNbjr6kZ8tW0LP+4tuiXpJXggEjYacn9GE+9CXelFVlZp5ZVRXiKyB2ir\nqidE5DJgharW+odz2wKPq2pXz3MB4oFyquoQkebAi6ra6VzlmlFehlU0Lw5Nex1y14H9ciTsacS/\nteXl5DqdfB+3k/Eb1nMsLZV6sWW4p3EzOteoaflw2dIsz+mk13ffciojnaW330mwX9GN09GsH9GU\nx8GnNhL1GWLz3goCxaVEj/IC5gCDPb8PBmYX9EJ1Z8DlQO/CXG8YVhDfOkjkJCRiAuBAk4biSrwL\ndeyztBw/u53+9RuwbNCdvNm+Exl5edw/fy6dJ3/BzLhdRbr4ZGnia7fzYpsbOJWRwYebfinSsiSw\nCxIxDhy/oYm3o86EIi2vNPHWHUo0MA2oDPwO9FHVRBFpDIxQ1aGe81YDtYEQ4DRwl6ouFJHqwBQg\nCtgMDNQC9JSZOxSjKKjmQuZXaPp40EwIug0Jub9Ivrk6XS5+3Pcb4zesZ8/pBCqFhTOicVN61q6L\nv4+P5eWVNg/Mn8uKQwdZP/Qegnx9z33BBdCctZ5JsFWRqK8RW0iRludNZmJjPkxCMYqSuhLRtPcg\nawpIqHsPlqDbKIppUi5Vlh3czwcb1rPtj5OUCw5h6DWN6V+/wf+1d+/hUdZ33sffn8nkBCEhJw4V\nEVAhAetZi92qCIoutlIO62Hbrqd6aLvd7bZ21dp1faw+0u3zrF7rs/VYpVUrCkLFdldbqYjV6sq2\nVgQiUtcDiCSEQ8iRJPN9/rhvFTGQCZmZeyZ8X9eVK5OZe+b+JIT55ve7fweK0/xGms1efm8D5y16\nhB+dcRZzaiel/XzWsQLbdiUUnIDK70nLv3U28ILSAy8oLhOsc114feV5yBuLhlwDhVPSMlnQzPjd\nu2/z45df4qWNG6gsLuaSY47jy58+miGF6d2uNxuZGdMeuJ/qQYN4ZO75mTln2xJsx9VQ/FfEym7O\nyDkzLduvoTg3YCl/PCq/Dw29CwDbfgW27RKsM/UjkCRx8ugxPDznPB6Zex5HDBvOj174HSfPv4db\nX3w+K2beZ5Ik5tZO4uX3NvZ7O+akz1k8CwZfAW0LsdZFvT9hAPOC4lwaSEJFp6GqX6Ih10HnKqzx\nHBI7bgi2Hk6DEz41ivtnzuHx87/M5FEHc/t/vcjJ8+/hfz+3nPqWA2eI6+zaicQkHluzOmPnVMm3\noLAbbBsAABUpSURBVOAkrOkGrHNNxs6bbbzLy7kMsMQ2rPl2aH0YNCi8vvLltPa5r2vcwh0r/4sn\n1tURj8U4d+IRXHLMcYwZOvCHuV6ydDF1DQ08d/Fl5MUy83ezJbZiW74IiqPKJShWlpHzZoJ3eTmX\nRRQrJ1Z6Pap6AgqOxXbOw7acjbU/nbbJiuMrq7j1zBk8/ZWLmVUzkUdWr2Lqz+7jkqWLeWnDuwN6\nkuTc2iN4v6WZ5955O2PnVKwCDb0dujeH634deEO6vaA4l0GKH0as/B5Ufi8Qx7Z/Hdt2EdZZl7Zz\njhlazi3TpvPcxZfx9585iVWb3+eCxY/yhYcfYP4rf2BrW2vazh2VaWPHUV5UxKI1r2X0vCo4CpV+\nDzqehZY7MnrubOBdXs5FxKwTWh/Gmv8fWBMU/1WwqVdeevdFae/qZNGa1Ty6ehWvNdSTH4sxdeyh\nzK2dxCmHjMnYLpLpduOzv+Xnq17l95dekfKdHffFzLAd34X2J1D5vajw5IydO1182HAPvKC4bGSJ\n7Vjzv0PrQ6AiVPL1YFOnDMxpWLulgcVrV/OLurU0trVSWTyImRNqmTNxErVV1Wk/fzq98v4mZj/6\nc/7trLP5/PiajJ7bEq3Y1nOhux5VLUF5ub1+rReUHnhBcdnMut7Edv4QOp6BvIPRkH+EwukZ2eyq\ns7ubFW+/xaK1q/nt//yZzkSCSdXDmFM7iXMm1FBRnNqtkDOhK5Hg2Lv+nZk1tfzgtNMzfn7regtr\nnB3MpK9ckNOTHv2ivHM5RvFxxMrvQuX3g4qx7d8M1orKwDDU/Lw8po07lDvOPocXL72SG06diiRu\nXPEMJ/3kLq781eM8/eb6nNr464/vv4dh7NwVzf4lio9BZT+ErtewppsiyZBp3kJxLguZdQUT5Xbe\nBrYdiuegkr9DeSMymqMu7BJb8mGXWDHnTKhl7sQjsrZLrHnXLn70wnM88OorjCot5eezz2VUaXRD\neBM7fwQt96Cyeah4dmQ5+sO7vHrgBcXlGks0BYtOtj4Q3FE8Gw2+DMVHZzRHZ3c3K955i0VrPuoS\nm1hVzezaSXxhQg3VgwZnNM/erHj7Lb7321+zaedOLjz6WL4z+S/SupR9Msy6sG2XwK4/ospFKL/H\nnTqymheUHnhBcbnKujdiLfdA60IgAUWfRyVXoPhhGc+yra2NJ9bV8dja1ayq30yexOdGj+Gc8TVM\nHnUwI4cMyXim7e1t3LRiOYvr1nBoeQXzTp/OcSOz50K4dW/BGmeCSlDlYzm3MrEXlB54QXG5zro3\nYy0/gbZHwNqh8ExUciXKnxhJnvVbG1lSt4Zf1K1lU/NOAMaVl/O5gw/h6BEjqamq5tDyirQNRTYz\n/nP9G9zw7DK2t7dz5XEn8o0TPpOVS/lbx0vYtguh+FxiZTdGHadPvKD0wAuKGygssRVrmQ+tD4I1\nB6sZD/4aKjgmkjwJM1Y31PPShnd5/t13eGnju7R3dQFQEMvj8MpKaqqqqa2qZmL1MGqrqikrKurX\nOetbmrl++TJ+/ef1HFE9jB+efia11cNS8e2kTaLpJmh9MFjjLYLW5f7ygtIDLyhuoLFEE7Q+hLXc\nH1y8L5iMBn8t+BzhFsFdiQRvbtvK2i0NrG2oZ+2WBtY0NNC426z8kSVDmFhdTW3VMGqrg2Izumxo\nr1sbmxmL1q7m5ueW09HVzbcmn8SlxxxPPENrdvWHJbZiDdMh/9PEKu6POk7SsrqgSKoAHgHGAG8B\n55rZJ9aalvQkMBn43Qd7yof3zwdOBXaEd11kZq/0dl4vKG6gskQrtC3AWu6DRD3kHx0UljTtw7K/\nGlpagiKzpZ41DQ3UbWngzW1b6Q7fhwbn5zOhsoqasBUzvrKS8RVVlBUVsbm5mcfWrmbhmtd4e8d2\nTvjUQdwybTrjyisi/q76xprvwpr/L6p6EsXHRR0nKdleUP4F2Gpm8yRdA5Sb2dU9HDcNGARc0UNB\n+aWZ9WnzAS8obqAz64C2xVjz3ZDYCPEaVPK1cIJkdi6p0tHVxbqtjaxpqKduSwNrGxpYs6We5l27\nPjymetBgGttaSZjxmYNGcf4RR/KF8TW9tmaykXU3YA2nwKCLiJV+4m0vKyVbUKK6cjUTmBLe/imw\nHPjET9bMlkmasuf9zrmeSYUw6AIongvtTwR/DW//e8gbCyVXBqPDlF1bBBfG43x62HA+PWz4h/eZ\nGRt3NrGusZH1Wxt5Y2sjwweXMHfipJxffl951VjhFGh/HBvy7az79+iPqArKcDPbBGBmmyTtz5W0\nmyVdDywDrjGzaKbDOpeFpHwong1FM6H9KazljmCb2ubbYfBlwUTJLF4KRBKjSssYVVrG1LG50S3U\nFyqei3Usg44VUDQt6jgpk7arWJKelvRaDx8zU/Dy1wI1wAlABT20bnbLcbmklZJWNjQ0pODUzuUO\nKQ8Vz0CVS9HQOyFWiTX9M9YwFWu5P7j24jKv8BSIVWFtA2vL4LQVFDM73cyO6OHjcWCzpJEA4ef6\nPr72Jgt0APcDJ+7j2LvN7HgzO766OjuXinAu3YItiaeiikdR+XyIj8N23oI1nIY134EldkYd8YAi\n5Qetx45nse4tUcdJmajG2S0FLgxvXwg83pcn71aMBHwRyOwuOs7lKEmo8LPEKn6GKhZAwZFY861Y\nwxQSO29L23737pM0aA7QBe19evvLalEVlHnAGZLeAM4Iv0bS8ZLu/eAgSc8BC4FpkjZIOjN86CFJ\nq4BVQBVwYCzl6VwKqeDYYPfIyiVQcBK0/BhrOI1E0y1Y9+ao4w14ih8G+UdhbY8NmO2YfWKjcw4A\n61qPNd8J7b8CYsEOkoO/iuKjoo42YFnrAqzpelSxEBUcFXWcvfL9UJxzfaL4YcSG/h9U9VQwQqxt\nIbZlOont38U6V0cdb2AqOhsowtoWR50kJbygOOc+RvHRxMp+gKqXwaAvQcdvsMZZJBr/Gmt/BrPc\n2WQr2yk2BIqmB3OGrC3qOP3mBcU51yPljSBWeh2qXoGGXAvdG7HtV2ANU0nsvBXreivqiAOCiucG\nC3y2/ybqKP3mBcU5t0+KlaLBF6Pqp1HZbRA/DFruCrrDGi/AWhdiieaoY+aughMhb9SAmJPiBcU5\nlxQpHxXPIFbxE1S9HJV8BxJbsabrsPrPkth+FdbxAmaJqKPmFCkWbA2860Wsa0PUcfrFC4pzrs+U\nNyLYMbLqSVSxEIpnQccz2LaLgqHH3iXWN8WzAEH7kqiT9IsXFOfcfpOECo4iVva/0LAXUNmte3SJ\nnY+1PupdYr1Q3kGQfxzW/kzUUfrFC4pzLiWkQlR8dtgl9iwq+S4ktmNN39+tS+x5HyW2NwXHQNfr\nmO3q/dgslX0bLzvncp7yhkPJZTD4q9D5Kta2BNp/ibUvhdhIrPiLqHgWio+JOmpWsM410PYE0AmJ\nrZA3IupI+8VbKM65tPmoS+wGNOx57xLbg1kHiZ3/ijUG63pp6O0oR4sJeAvFOZchUiEUn42Kzw7W\nCmtbGqxj1fR9aLoJK5qOimdBweSs3V0ylWzXH7Ad34PuN6FoFiq9FsWGRh2rX7ygOOcybt9dYiN2\n6xIbG3XUlLNEC9b8r9D6IMRGovJ7UeEpUcdKCS8ozrnISIKCo1DBUVjptdC+LFjXquVurOVOLP/Y\noNVSNCNYpiTHWcfzWNM/QfdGGPQlVPJtFCuJOlbKeEFxzmWFoEtsBiqe8VGXWPuS4A246Sas8DRU\nNB0Kp+Tcm7AldmA7b4G2xZA3FlU8hAp6Xbw353hBcc5lnY91iXWtClot7b/GOp4E8rGCEyF/EorX\nQn4N5I3J2usu1v4U1nRjMHpr8JWo5BtB8RyAvKA457KWJMg/EuUfiQ35J+h8BWv/Dex6Hlruw+gK\njyzC8sdDvAbFayC/FuITIm3JWHdDUEg6noL4RFR+D8qfGFmeTIikoEiqAB4BxgBvAeea2bY9jjka\nuAMoBbqBm83skfCxscACoAL4A/AVy+XZQM65Xkl5UHAcKjgOIJgA2LUeuuqwzjroqgtaMfboh8+x\nvIMhXovya+CDQhP7VFCo0sTMoG1J0MVlbcGaZ4MvCfaRH+Ai2bFR0r8AW81snqRrgHIzu3qPY8YD\nZmZvSPoU8N9ArZltl/QosNjMFki6E/iTmd3R23l9x0bnBjYzg8Rm6FwbFprgM91vA+F7nUohPgHy\na8PWTA3ED09JN5R1bQiu+ex6HvKPQ2U3o/i4fr9u1JLdsTGqgvI6MMXMNkkaCSw3swm9POdPwFxg\nPdAAjDCzLkknATeY2Zn7ej54QXHuQGWJFuha9/HWTNfrYK3hEXkQH7dHl1kNyqtK7vWtE1ofDoYD\nIzTkKii+AGlgzB1PtqBEdQ1luJltAgiLyrB9HSzpRKAA+DNQCWw3sw86TzcAB6UzrHMutyk2OFgr\nq+AYPujsMktA9zsfb8nsWom1P/Hh8yxWHXaV1ew2AODgD1szlmiGtkexlp9CYhMUnIzKbgwWezwA\npa2gSHoa6GkNgev6+DojgQeAC80soZ47P/fazJJ0OXA5wOjRo/tyaufcACbFID4G4mNQ0Vkf3m+J\n7RC2YqyrLug+a5mP0fnRMRoKecOh+z2wnZB/Iiq9IRjSnMbrM9kubQXFzE7f22OSNksauVuXV/1e\njisFfgV838xeDO/eAgyVFA9bKaOA9/aR427gbgi6vPbvu3HOHSgUGwqFk6Fw8m6tmV3Q9WbQTdb9\nXjBPJvF+MJJs0FdQwVGRZs4WUXV5LQUuBOaFnx/f8wBJBcAS4GdmtvCD+83MJD1DcD1lwd6e75xz\nqSIVBN1d+TXB1xHnyVZRXTGaB5wh6Q3gjPBrJB0v6d7wmHOBU4CLJL0SfhwdPnY18G1J6wmuqfwk\ns/Gdc87tKZJRXlHxUV7OOdd3yY7yGhhj2pxzzkXOC4pzzrmU8ILinHMuJbygOOecSwkvKM4551LC\nC4pzzrmU8ILinHMuJbygOOecSwkvKM4551LCC4pzzrmU8ILinHMuJbygOOecSwkvKM4551LCC4pz\nzrmU8ILinHMuJbygOOecS4lICoqkCkm/kfRG+Lm8h2OOlvR7SaslvSrpvN0emy/pf3rYydE551xE\nomqhXAMsM7PDgWXh13tqBf7GzCYBZwG3SRq62+PfNbOjw49X0h/ZOefcvkRVUGYCPw1v/xT44p4H\nmNk6M3sjvP0eUA9UZyyhc865PomqoAw3s00A4edh+zpY0olAAfDn3e6+OewKu1VSYfqiOuecS0Y8\nXS8s6WlgRA8PXdfH1xkJPABcaGaJ8O5rgfcJiszdwNXAjXt5/uXA5QCjR4/uy6mdc871gcws8yeV\nXgemmNmmsGAsN7MJPRxXCiwHbjGzhXt5rSnAVWb2+STO2wC0AFv6ET8qVeRe7lzMDLmZOxczQ27m\nzsXM0L/ch5hZr5cc0tZC6cVS4EJgXvj58T0PkFQALAF+tmcxkTQyLEYiuP7yWjInNbNqSSvN7Pj+\nfgOZlou5czEz5GbuXMwMuZk7FzNDZnJHdQ1lHnCGpDeAM8KvkXS8pHvDY84FTgEu6mF48EOSVgGr\nCKruTZmN75xzbk+RtFDMrBGY1sP9K4GvhrcfBB7cy/OnpjWgc865PjsQZ8rfHXWA/ZSLuXMxM+Rm\n7lzMDLmZOxczQwZyR3JR3jnn3MBzILZQnHPOpcGALSiSzpL0uqT1kj6xtEs4IfKDi/3rJG2PIuce\nmXrLPFrSM5L+GE7qnBFFzj0lkfsQScvCzMsljYoi5x6Z7pNUL6nHEYIK/Fv4Pb0q6dhMZ+whU2+Z\na8L17zokXZXpfHuTRO4vhT/jVyW9IOmoTGfsIVNvmWeGeV+RtFLS5zKdsSe95d7tuBMkdUuam9IA\nZjbgPoA8gln14wgmP/4JmLiP478J3JftmQn6QL8W3p4IvJULP2tgIcHEVICpwANZkPsU4Fjgtb08\nPgP4T0DAZOClHMg8DDgBuJlgblakefuQ+7NAeXj7L3PkZ13CR5cMjgTqos6cTO7wmDzgt8B/AHNT\nef6B2kI5EVhvZm+a2S5gAcH6YXtzAfBwRpLtXTKZDSgNb5cB72Uw394kk3siwSKgAM/08HjGmdkK\nYOs+DplJMAfKzOxFYGg4CTcyvWU2s3ozexnozFyq3iWR+wUz2xZ++SIQeQs2iczNFr47A4MJ/m9G\nLonfawj+gH6MYH3ElBqoBeUg4N3dvt4Q3vcJkg4BxhJU7Cglk/kG4MuSNhD8dfHNzETbp2Ry/wmY\nE96eBQyRVJmBbP2R9O+QS6lLCVqGWU/SLEl1wK+AS6LOkwxJBxH8H7wzHa8/UAuKerhvb39BnA8s\nMrPuNOZJRjKZLwDmm9kogi6ZByRF/W+YTO6rgFMl/RE4FdgIdKU7WD/15XfIpYCk0wgKytVRZ0mG\nmS0xsxqC1Tp+EHWeJN0GXJ2u97uoll5Jtw3Awbt9PYq9dw+dD3wj7Yl6l0zmSwn2hsHMfi+piGCl\ngJQ3Xfug19wWbD8wG0BSCTDHzHZkLOH+6cvvkOsnSUcC9wJ/acHE55xhZiskHSqpysyyfY2v44EF\nwapVVAEzJHWZ2S9S8eJR/3WbLi8Dh0saG64Jdj7B+mEfI2kCUA78PsP5epJM5ncIVxiQVAsUAQ0Z\nTflJveaWVLVbS+pa4L4MZ9wfS4G/CUd7TQZ2WLjlgkstSaOBxcBXzGxd1HmSIemwcC1BwhGABUDW\nF0IzG2tmY8xsDLAI+HqqigkM0BaKmXVJ+lvgKYIRDfeZ2WpJNwIrzeyDN7wLgAW7XVyLTJKZvwPc\nI+kfCLpfLoo6e5K5pwC3SDJgBVnQIpT0MEGuqvCa1D8D+QBmdifBNaoZwHqC3UMvjibpR3rLLGkE\nsJJg4EZC0rcIRtw1RRQZSOpnfT1QCfw4fI/usogXX0wi8xyCPzg6gTbgvKj/L0JSudN7/iz4GTjn\nnBsABmqXl3POuQzzguKccy4lvKA455xLCS8ozjnnUsILinPOuZTwguKccy4lvKA455xLCS8ozkVM\n0i8k/bek1ZIujzqPc/vLJzY6FzFJFWa2VVIxwVI2p+baelbOwQBdesW5HPN3kmaFtw8GDicH1oVy\nbk9eUJyLkKQpwOnASWbWKmk5waKfzuUcv4biXLTKgG1hMakh2G7YuZzkBcW5aD0JxCW9SrBJ04sR\n53Fuv/lFeeeccynhLRTnnHMp4QXFOedcSnhBcc45lxJeUJxzzqWEFxTnnHMp4QXFOedcSnhBcc45\nlxJeUJxzzqXE/wfCwuvjeTeomgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m.draw_mncontour('a','b',nsigma=3)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD8CAYAAABq6S8VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXu0ZFdd5z+/qrq3b3en8+wkfbs7ncck+GBGo14DjiNG\nIBKzGOOMCEEHEyesHhSccUZcgDigUTSsWWuEWaBMC5GADkGjQI9mzIJABl0CkwYjEJDQBAid2yHP\nTnffZz1+88fZu87v3NrnVt2uul1V9/4+a9WqXfvsc2rfR+36nt/+PURVcRzHccaXyrAn4DiO4/SH\nL+SO4zhjji/kjuM4Y44v5I7jOGOOL+SO4zhjji/kjuM4Y44v5I7jOGOOL+SO4zhjji/kjuM4Y05t\n2BM4FXbu3KmXXHLJsKfhOM4Y8NnPfvYJVT3/VM9/0Y9t1yefavb2Xp9fultVrz3V9zpVxnIhv+SS\nSzh06NCwp+E4zhggIt/s5/wnn2ry/+7e19PY6vRXd/bzXqfKWC7kjuM4pwsFWrSGPY1V8YXccRxn\nFRSlrr2ZVoaFL+SO4zhdcEXuOI4zxihKc8TTfftC7jiO04UWvpA7juOMLQo0fSF3HMcZb1yRb0CW\njl4GwIQUf32VXQ8OYzqO46wjCtTdRu44jjO+KOqmlY1CVOGrcWz2IgAmJE9hU6Pabm+ZfmjwE3Mc\nZ31RaI72Ou4L+amwpA0AjutSu2/C8485zoYki+wcbQaykIvItcDbgSrwblW9dcXx5wFvA74HuEFV\n7zTHmsAXwsuHVfUnBzGnQdCLCl8LT87uBYqL/oRUC8+R2q7DA31vx3FOFaGJDHsSq9L3Qi4iVeCd\nwDXAEeA+ETmoql8ywx4GbgJem7jEgqpe2e881puowgGWyMJ151r593Td2NAmyMdOSfYPYM0tjuOM\nD9lm5wZfyIGrgMOq+hCAiNwBXA+0F3JV/UY4Nup3KMDglfip4PZ2xxkNMj/yjb+Q7wG+ZV4fAZ6z\nhvOnROQQ0ABuVdUPD2BOAyGlwiFX4kvmW3pR80XW/tEnwnfXpLGyTUh+rSlphD5zjtvbHWekaG0C\nRZ76Cdeyx7tPVWdF5DLg4yLyBVX9WsebiOwH9gPs29dbbuC1MAoqfC1Ee/s2mSj0b53++jCm4zgb\nls2iyI8AF5nXe4HZXk9W1dnw/JCI3At8H9CxkKvqAeAAwMzMzLo6A0UlnlLh2fHsj2pV+KLWTDtf\nXOM/wIS51lQlV/qToX9C0ord7e2OM1wUoTnid8mDmN19wBUicqmITAI3AAd7OVFEzhGRLaG9E/hh\njG3dcRxnFGip9PQYFn0rclVtiMhrgLvJ3A9vU9UHROQW4JCqHhSRHwQ+BJwD/GsR+S1VfTbwXcD/\nDJugFTIb+WlbyMfNnNILT87u5QyZLPT5xqjjnDqKsKzV7gOHyED8yFX1LuCuFX1vMu37yEwuK8/7\ne+BfDGIO/dLNvTC1sVlmTpnTfCFdbGX9VTHuiea9osllsrABWs+PWzNLcuN0sd0+qzLa/2yOM45k\nAUGjbVrZlJGdG1GJr0Z0ZTyzsrXd5wm+HKd3NsNm59hyqu6FUYl3U+HZmKx/sZn3VRMbm1Oy3NEH\nMCmNjv6yjdO58PPskIV239mVTf0ndpy+URWa6op8JGg8evmwpzBSzB29uN3ePv3NIc7EcUaflivy\n0WNQ7oXdVLjtt+p9yajziXZA0JTpa3Ych9yOPlUxNvSEvX2+ktvN53XZtE8CcFal6HvuOE452Wbn\naC+Voz0757Tw6CO7ATirsqXQ78FFjuObnSOFzSbYCpt//XqldFPh9rwl0zffysfWNduALKrwvL2l\n0unBMtnqtJvb9olWru53GHU+V10I889V+o7RvmN0nJGguQlC9J0NypOzezmrMlXo8/S6zmZjHCI7\nN+VCngpxPxWvlG4qHHIlblW4HbvUyt6rbt5/S2V1xT1Rcjz6n1t7+wnjcjivmelkvjLf7ju7smCO\nu0+646RoDchrRUSmgE8CW8jW3ztV9c0rxmwB3gf8APAk8LKYQbaM0f6acRzHGTJZ0qxKT48eWAKe\nr6rfC1wJXCsiz10x5mbgaVW9HPh94K3dLropFblz6hyfzTNPnrn74SHOxHFOD4oU7pj7upaqAifD\ny4nwWJkE8HrgN0P7TuAdIiLh3CSbciGPBRomTQ7wigmhj6aPrkE+XcwpkJtUUuYU27Z9c43ce6RW\nSZlW8k3aLTacv9IsjFvZnmtl152r5tefq+Y/446W3RjN2vM61+47S9xt0dl8qLKWgKCdob5C5EDI\n3NomVFX7LHA58E5V/cyKa7RrPIRcVs8A5wFPlL3pplzIncEw+8huzluxGeoJupyNh6wlIOgJVZ1Z\nbYCqNoErReRs4EMi8s9V9YuFN0yctto1N+VCXg2bnbYqj01EVQntesH9sEuQT4l7YRybUuG2vdDM\nz1lupW/jJqPiNiq9ZjIdxqRaVsXbjdMTzWzRna/l59i57igEEmVKfN5uhlaWzNjkFB1nw6GsSZH3\nfl3VY6EGw7WAXchjjYcjIlIDzgKeWu1a/nF0Bsrx2X3th+NsFAa12Ski5wcljohsBV4I/NOKYQeB\nG0P7JcDHV7OPwyZV5NEXemI2L2xUKSSqirbmXM3WdVu73S3IJ2UPL1PkUYlbFb5sji838/5ox68Z\nG3nNJOCKSnyy4J7YeXzBzHXe2MvPquVuibk9PbeRz1Xz4zs0U+eLmiv2nR7672xAlIEWjZgGbg92\n8grwZ6r6V7Z+A/Ae4P0icphMid/Q7aKbciF3Tg+xrijAebuPDHEmjnPqKEUza1/XUv08WTnLlf22\nfsMi8DNrue5AZici1wJvJ6sQ9G5VvXXF8ecBbwO+B7hBVe80x24EfiO8/B1VvX0Qc+oFGxhka2NG\nT48q6Tqa8du5mwq37ZQKh1yJl6nwglIP/dbDxqrzaEPvpthPmL75ifRdxcnotWL6okoHODMcX6yc\nbPfVjWLfWXWrnbNRkI2fjzzcIrwTuIbMSH+fiBxcUbLtYeAm4LUrzj0XeDMwQ/bF99lw7tP9zssZ\nLdzDxRlXlMFFdq4Xg1DkVwGHVfUhABG5g8yhvb2Qx/DSUJvT8iLgo6r6VDj+UbId3A8MYF5dqZjN\nCetTHu3KZelkrSKOnKpXSlTi3VR41s7GNlv5vKtGfcd2taDCV1fstuDFglHn0de84OFSyxX5fGu+\nMA6KXjyLmiv186v579FxxpENr8gxzuuBI8Bz+jh3zwDm5DiOMxBUZVMo8jU7r5/KuSKyH9gPsG+f\nu7ZtBDzc3xkHss3O0U4iN4iFPDqvR/YCs2s49+oV596bGhjCXA8AzMzM9PpFsSoTUjXt/DulGr5L\nbG3MyUQdTWt6sZyKe2E3cwpAPfQ3jGmlWc+PVyvZvAumlWqn6cVugFYLZpb8WvO1LPR/ocTFMppc\nTpiw/rKUBYt6InuuuquiM45sjpqd9wFXiMilwCNkPo8/2+O5dwO/KyLnhNc/DrxhAHNyxozHZ/dw\nXmV7oa+y68EhzcZxcrLNzg1uIw9JXV5DtihXgdtU9QHr4C4iPwh8CDgH+Nci8luq+mxVfUpEfpvs\nywDglrjxeTqwRRJscFC7Eo9R3JWEK2JZciq7Gdqre2E3FQ65Em80c3Vg20vheDWhwgEqUbHbDVKb\nLKxhVPREVkXIqnS7GboQNknPqOWeKPOlG58xpcGJvM8EGp0/2netjrM5Ckuo6l3AXSv6rIP7fWRm\nk9S5twG3DWIezsZi6ehl7ba7KjrDYsCRneuCR3YGUsFBEwm7uO2vGFvzRCLdLOT26Hlj107Zw7up\ncMjVd1GR52NbzeyfrdHIj0cVDiApRW6OL5mqQMuNrG1VuFXni6F/oZkn0pqvlQVFBUVesyrdJiTL\nXBUXq7liv8BUNnKcYePFlx1nAEQPF/ducU43qlBv+UI+Fmyf/ma7feKR3UAx4VQqOKgXG3ktEYTT\nqBt1HlRuNxVu2ykVnrWz42r6rF+NVLN5NYwKTyl2gKXwMyw18juR5YZR2aG9OGE9XXKvFqvkl9o2\n8lpHH8CyxrqluSKvu4eLMyJkphVfyB1nYDw+m8eLnb/7kSHOxNlMbIbIzg3HjqAA53W53Xcs4VOe\nspt3tjMlXiGd6CrSTYVn7UyJp1Q45Epc7W2gGauNMIfC4bQirwT13jTXrzc6bftLCd9zKNrTo8eO\nvT2tWy+eoMhTvueQe7i4d4szDDaF+6HjOM7Gxk0rjrNuPBr2Mi6onlHo90AiZ9CsoWbnUPCFPEHc\n+NwWFgqAM029yvlQv7PcnGLcD9ubnZ0uiQCSyKTYzb0wZU4BY1IxfTRMO55nTChaNe9vTS5hTNO4\nZTZrph2uZc0tSxM26MmaVmJqATM2mbPdmFYSroo2o+Luam7Wcpz1JPNaGW27ni/kzoaj8ejlQDFy\n13FOFQ8IGnN2GLc3u/F5vJW1txmVfkLyUPVUcFCtJEd47K92pGrP6OZemNzYLKjwzrbUTZ81/VUS\n6tz0NU2gUSu0m5PGbbJsY7SRSEOQUOdLmg4Yyt0Xc/fGJsfy9yLfGJ2uFvO1OM4gcNOK4wwJD/F3\nBoF7rYw5NkgoZS+fNxXkbcKoE61cncfgoIKNPFXVxyjfaknATnN5dffCthJPqHCAKPrF9FVyj0G0\nYpW6lvaFSWaXb+Y/S8vcCTQmcsUd1bm1M9ZTaQqs3dzY2JcmgyI3NvSm+WDV9RnTn7kqTlc9xN8Z\nHO614jgjwNzRi9tt+wXtON1QFRq+kG8MUvbyOc2LKhw39vIdlbw/KvW5Rq7YU8FBxXSzxqslEUKv\n1mEjZQ9PqHDIlbiJYyqo88LNY/i/tf+/RXWePVkVrpMmNUDDKvWo3ju9XiD3zCkmE+v0almcNIrc\nGPfrxp7eDHW7W+Rpci+s5rZ1xzkVRt20MtpfM46zDhyf3VcoM+c4qxFt5L08uiEiF4nIJ0TkyyLy\ngIj8p8SYq0XkGRG5PzzelLqWxRV5j9jb8R0h38eJVm5gPrOyur18ey1X7Aumcv18KOZg/cmtjdz+\na7Rduu3Xr3VDj4o7ocIhV+IFG3nTjjXXCu9cVOSmHcSzWBt703q1GG+boMjr9ngiDUEhhN8mEQtv\nXDcTaBVs5PnYqNRbBcWe+59PV/1f3lk7A1TkDeBXVfVzIrID+KyIfFRVv7Ri3N+q6ot7vehAFLmI\nXCsiXxGRwyLy+sTxLSLywXD8MyJySei/REQWzDfPuwYxH8dxnEER/cgHochV9aiqfi60TwBfBvas\nflZ3+pYnIlIF3glcQ1ZM+T4RObjiG+Zm4GlVvVxEbgDeCrwsHPuaql7Z7zwcZ60cM+X9zt79rSHO\nxBl11uBHvlNEDpnXB0Lh+A6CoP0+4DOJwz8kIv9IVsj+tar6wGpvOoj7zKuAw6r6UJjcHcD1gF3I\nrwd+M7TvBN4hIqO9e7AKZ0i2eWY3NbttfFpzy5xpT9Uye8d8I7dr2OCg4sZnbJsQfXNPFX+hKXOK\n7S8zpxRNMnRgLBjt91XzZ1RjTpHJ3ObTamjH8YY1vcTUA0bRNG02yPBmy4Wc7caV0UwsuolZ98Tl\ngunlOAC7q7495PSGajE7aReeUNWZboNE5AzgL4BfUdXjKw5/DrhYVU+KyHXAh4ErVrveIP6b9wBW\nzhyh81ahPUZVG8AzwHnh2KUi8g8i8n9F5EcGMB/HWTOPz+5pPxxnJYMyrQCIyATZIv6nqvqXK4+r\n6nHVbGMn1EOeEJGdq11zEIo8NfuVmaDKxhwF9qnqkyLyA8CHReTZiW8oRGQ/sB9g377hehxsnf46\nAGfN5vWk50wIf2rj0wYJpTY+bb1LW80+FRxkXRLVBum0N0yNMk5sbPaiwvON0byPxMZnYQPUqn+r\nzieC4jYq3arzVitrL7XSedabicpI1lWxkdgEtYUArHtivEWOyhxgV3Xlv6vj5Awy10qwRLwH+LKq\n/veSMbuAb6uqishVZJ+8J1e77iAW8iPAReb1XjK7TmrMERGpAWcBT6mqAksAqvpZEfka8Czg0Irz\nCXamAwAzMzP+yXPWjUdNFO+uPSv/lZ3NiA7Oa+WHgVcAXxCR+0PfrwP7svfRdwEvAX5RRBrAAnBD\nWCtLGcRCfh9whYhcCjwC3AD87IoxB4EbgU+FSX48fNucT7agN0XkMjI70NgkxTinsq3dXjIubvNG\nkc9VMkW+o5Ir8pS9fJutrlMzwTCmHZNPpYKEgGSiK8Sq8/DcRYXb/oI93boahsum7OYAFdPfasRn\no7hNjI4E+6NNEFZPqPNCUq5W2hWx1XZVNDb0yZQit+6JuTr39LhOikElzVLVvyNtobBj3gG8Yy3X\n7XshV9WGiLwGuBuoArep6gMicgtwSFUPkt1KvF9EDgNPkS32AM8DbgnfPE3gVar6VL9zcpxBMfvI\nbnZ54YpNjeroR3YOJDoiGOTvWtH3JtNeBH4mcd5fkBn9xxL7gT7n6KXt9lw1t4EvhiROc61chc+b\n9sla1rZBQlaR2wIL9VqmMm2Bh5ZJF9tOdGU9SQr29OC1YpR1SoWDsadb9d7qPF4aMGT+7+N7VMx7\nNQueNTG1gPF0MXNptAtqpL1atKDIs3bKbg5GkZvjdVMQw6bH3VPN9z2czYwU/t9GEQ9zc5w10nr0\nWe22q/PNwQBt5OuCL+QDInqyAJxvAk0Wq/MAzJmiCLaAwnwwFhfC9pv52CljO18OqWGXjQpvVk1y\nqmr4ZysUi8ibKU+Tgok95c1it1isIq8njpvr2spYUYm3Su4Eor3cetg0C+H8IV2AOb5s2ifNHNpe\nK2WKPNrQS/zQm4WxmTpvmsIVe6o7cDYXno/ccRxn3NHMTj7K+ELuOH0QzSxuYtnYeKm3TYjN2zEf\nfJIXq7l7oq10Mxc2O23fgjGtFDY+Q6DQZC23gTQnzKZfrKlZ7dzgzNrF55XtgpkkoUBSbouVZlqq\nVBJ5zK2rYtOYcaJ7YmHjtWXNLGGzs+CSaMws5kMWbZmFsYnNUJtJ0boiptvWkcrNLJsN9c1Ox9kc\n+AboxsZNK5uc80Ig0GKhvmdevSZWhl+yinwib9tQ9MVQNadQjd5ufNYyydyaMAq13lnVB+lU6VBU\nzFZ9p/qiEk+5LK4kukDaDVBJBAdJWTKv0LYqvFEICMrH1kPbKnLrcRDbxfNX3xgt0qnOXZlvfNxr\nxXE2Ga7ONxaqvpBverZMZxkHzi24JFpFnv0J5mvGLm7U+ZKpLL8YXBQLrnNWkQcbedtWDuiEDbLp\nDAgy+aQKQThxTGk4fyqE39jLbfBPFLZFu3k+ttmItURNgq+CvTyMs3cJ1oZu1HWcQtMcn0/YyO05\ndiNrbW5mmTqvku9/rIwCdTYG7n7oOJsY92rZGLiN3AGKniyLJrveXAgYWtS0Ip832aWiOi/YyE1C\nqJhUqmUUebPRaS83ly8E4RQSYMXYopIQ/diWMq+VhvGcaVe8MANsIFI9npP3NRMeLKU2dKuWgvy3\nNnIzFRYSNvS1qK1KavOgYDd3db7RUISWe604juOMNyMuyH0hHwbn2JS2wZtlsZIruehbDsUEW1GR\nLzbTXi0xtastwGALNETbeau0FFzejurcFougU/gWKBShMPeiMTNsMZGWOR5SC1QKNvJUQQzTV3qn\nEL1S7GTzZryBWCzxaumftDrf3TnQGRd8s9NxHGcDMOKS3BdyxzkNzJp9kd1edWjscEXudBBdEgF2\nzmb1RxerJmBI8zBwm488boIWA4ZMNaEQMNRIZA7M+mNe73wuYjZGrTkjbojaDUjzVoX+9rVsYSIb\nPLScvbDpAqqL+STaedJr1rRi5lWPm515nzWzkDKzFNINmPMSm51LZmhHsdgVVGR1aVa1kwm5zS+q\nLaUHO2OBUvx/GUUGshUrIteKyFdE5LCIvD5xfIuIfDAc/4yIXGKOvSH0f0VEXjSI+TjOKDP7yO72\nwxkDlGyDp5fHkOhbkYtIFXgncA1ZkeX7ROSgqn7JDLsZeFpVLxeRG4C3Ai8Tke8mK/v2bLL9oI+J\nyLNUtSTYe+Nx5u6HATjXfKgLCbaMW2J0RbRBQoWAoUbWrjfTAUPRLdFW5ylU3UlsghZyiNvN0Ha4\nvzluYuWtW2Lc2Kw20n/W9nlG5VfqubKtbMl+hkohHYCZayvRLkkA1g4EKlQNyrHa+UQX9d07edUh\nV+fjyaj7kQ9CkV8FHFbVh1R1GbgDuH7FmOuB20P7TuAFIiKh/w5VXVLVrwOHw/UcZ1Pg6nxM0B4f\nQ2IQNvI9wLfM6yPAc8rGhGLNzwDnhf5Przh3zwDmNHbsrG5rt2OdT4A545YY7eWLiQpDkNvLrUui\nDR5qtqvVJ1LfAi1bM7PRaU+3ijgm5jIZdwuh/xh7eK9yQRpGhS+1Ovor5u5CmrZtbOAxUMko7rTt\n3t5K2HB9c4fT27QLdLOhV+Tpdttrgo4LMvKbnYNQ5KmfcOV/c9mYXs7NLiCyX0QOicihxx9/fI1T\ndJzRx5X5CLMJFPkR4CLzei+w0r8qjjkiIjXgLLLIiV7OBUBVDwAHAGZmZkbcYrV2arsOt9vnBk8W\ngHnjzRKV+JwNEproTLBlA4asvTx6szSNCm8UijXk84ljCvbnRCIr6z1SXe5U9ACVSm9qprKUv4Es\nm3Y92MiXjQpv5D9jQZ2Hu5GCMC6E8CffOTmfqM7LlHk39d0dV+djgYIOyGtFRC4C3gfsItueOaCq\nb18xRoC3A9cB88BNqvq51a47CEV+H3CFiFwqIpNkm5cHV4w5CNwY2i8BPq6qGvpvCF4tlwJXAP9v\nAHNynLHl0Ud2tx/OqCA9PrrSAH5VVb8LeC7w6uD0YfkJsrXwCmA/8IfdLtq3Ig8279cAdwNV4DZV\nfUBEbgEOqepB4D3A+0XkMJkSvyGc+4CI/BnwpfADvnozeayUET1ZAC6c3dtuR9v5vG4xfcZeHgzW\nNpGWtZHnfubpEH6bYCt6s6Q8WcAq8ryvuZweG/3DrTC3YraynF2koMIXcoUqSyE9b83axY1XjMkC\nlvuRp+vZSVdbZ6e2aUp/dnNL0c/ckqnzi1yZjyYDsgGo6lHgaGifEJEvk+0LWi+/64H3BbH7aRE5\nW0Smw7lJBhIQpKp3AXet6HuTaS8CP1Ny7luAtwxiHo7jOOtC7wv5ThE5ZF4fCGbhDkI8zfcBn1lx\nKOVAsofwBZDCIztHnPN2H2m36+FWu2n8kptGYdZDpqu6yUe7kEiwZSM/bVttStt2FGiJz3lU5EZ5\nN6asP3feXwnvYW3ZtflOe7gsGrcXW0UitKVuzrE+6cbbpa3UTcWMoik74QBvKXQn1PkavFoq4dNv\nU99aRW5t7BPh1mbS2M331pQnzR2Z/V9wTiMxIKg3nlDVmW6DROQM4C+AX1HVlQHFPTuBRHwhdxzH\n6cIgA4JEZIJsEf9TVf3LxJCenUAio50t3XGcNsdn93HceDQ5p5GW9PboQvBIeQ/wZVX97yXDDgI/\nLxnPBZ5ZzT4OrsjHigtCxZk6eVKtuj5j2iFE35hWbDtWwmkUalzagKC8XY/Vhgoh/J1Jq1q2qk+h\ngo90tG0iLF2ydUWzOeqU2bQ82WXPe26+3ayYN5ZWMF2YDeG0l6DVMF0+gJLWO9HMsmTe4Lhpi0TT\nism9btqF/mByqRozzIQJHtpbNeWbnNPOwLI1wA8DrwC+ICL3h75fB/YBqOq7yPYbryOLdJ8HfqHb\nRX0hd5wxY+7oxe329ulvDnEmm4QBBvuo6t/RRTkEb5VXr+W6vpCPEbGA7wVHL2v31U3AUFTnyyWK\nvBE3O1udYftZO///mot5rAoJpzpVdqF2Zkm1oZget7HFKPqt1pUwbGY2zAal9VVsdX6KdDHfapR6\nvkkqQZ1X12TUNHcH0rt7Ytz/alZMEjMj3k9WQrIwU86oZtvmlxQ3OydsH3m7Sva33WvSGjuni+Fm\nNuwFX8gdZ4xZMl/qNs+9M2BGPJbcF/IxxH5gp49e2m43Q43IprlzaxkFWW9FG7pxPyxpx6rh80ax\n23D+ZjLwJm8WE1UFG3lBpduCFtm8bB1P2WZs3CeD+l7Og2V0Lr8TaRkbeSW4KIqtGUonhah9K7as\nPTyo85LYIrQSXpjzbb2L+fBLEPPLqEkr2Z4I7QlTsWPC3OJMthV7vj+yp7oV5zRRFsc1IvhC7jgb\nhNajz2q3oxnOGQBr8yMfCr6Qjzlbp7/ebl8YXNPqpjBFyoOlZRW7VeFqFXdIsGWrzRdidIKNPFW0\ngWJAUFQzUqhs31l+zapoMel5qzHgxyhymcj/dVtLub28eSwLlrIqXIzduxrb1hZe0o6/DluiLqXO\n7fFmxew5BNv5QiX/uY5VOr1aIPdgKQYP5cdzRW4Ve35Xsqe6A2f9GKDXyrrgC7njOE43fCF3Thcx\n2ZZNtFU3hZyXg5/5sglfr7esYrf28JCoyqh0214M7ZatyJwquYYt9kDJ8aDuW9aTxaapDWq1aUPx\nO+3ikKvz1sm8OEfVqHcJ/tiVWv6z1qplirva2VdQ7/HZFtGwijx7rpsffN4o8pQ3S81sJExUrA09\n6y9T7FXyuzDI6iY6mwdfyB3HcbrgphXHcU47j89mFRPP3/3IkGeyAVB6Cr8fJr6Qb0BslrzWbF4C\nNWZNLAvhTwYPGbuC3fiMG6NLib6V5+W7hnmX3QzNTSt2s9T8a4bzamYztGLbGI7HKB3r62hGhOCi\nyvxy8nhhYzOYXLSaPk57s9NMtbBZGtIcmHzmJmU7c4nQ/WLAUGfwUMolMet/qt2+qLbpU/oPHlfk\njuMMi2OzeRK9s3d/a5WRzmpsaNOKiJwLfBC4BPgG8FJVfTox7kbgN8LL31HV20P/vcA0EP2oflxV\nH+tnTk4Re2sd85nX1eQzx7of2mryWbuR2ACFPNmWrWW4bBR5q+CqGPKRa+cGaHaR1G2r1dnh39So\ncPuPWzEquBLUtS6YbOFbE4EzSyasfyK/E6mYdnUiKOpafv1aNZ9DW7HbqRbaITWBUfytiqnYVMk3\ndE8kEmxVsO6JIWAoEdafta1bYvb3vag62uaAsWLEF/J+09i+HrhHVa8A7gmvC4TF/s3Ac4CrgDeL\nyDlmyM/474+uAAAfqElEQVSp6pXh4Yu446wTc0cvbj+cNaI9PoZEv6aV64GrQ/t24F7gdSvGvAj4\nqKo+BSAiHwWuBT7Q53s7a+SC6jYAljV3zVu2aXCNm1672lCrRLFH98OCCrc28vx92+U1C9I1pRbL\nqt3H89IJo2oFRR7s7WtI+yp148po6oZWF8PPaBR5sR2mapSv8aAk5tKqFNwbV1fnJ7q4J05Y98Oy\ndojAmjSVpDzZ1qkjOvqmlX4V+YUx4Xl4viAxpqz+XOSPReR+EfmvIl1TzzmOMwAWjl7KgsnT43Rh\nQIUl1ouuilxEPgbsShx6Y4/vsVr9uZ9T1UdEZAdZ6aNXAO8rmcd+YD/Avn1eJeVUqO06DMC0TYPL\nvGl3erCUerVEG3khYCh/r1zzQ9S4RV+KhFdLgdXt5ipGYRpPkhiCbwN+ZMF4qCRS4mLrfzbz41Hk\n1hbz461J8/OG9zC/loJi17Ziz49b9W69YVq1bNBSNf9InqyaNAXtgCGr0svs5Z0pcSsm2dbeap6Q\nzOmNUVfkXRdyVX1h2TER+baITKvqURGZBlI27iPk5hfI6s/dG679SHg+ISL/i8yGnlzIQyXqAwAz\nMzMj/mt1nPGg8ejl7Xb8oncSjPiK06+N/CBwI3BreP5IYszdwO+aDc4fB94gIjXgbFV9IhQjfTHw\nsT7n4/SATYO722x8tUw4f/RKaWrv1rdWSeGTqM4LdvPCiC6V7VP9hXSz+b9x9OOuGkVeNfZyiTZw\no8J1izl/Sz42qmcxKr22kCvi6FNufctb5kYh2sur9uaj0qno7diGsZEv1oz6rmbtLdXchj9l0thu\nMelvt1Qyj5yyIhUT4S+yt7Ydpwc2gY38VuAaEfkqcE14jYjMiMi7AcIm528D94XHLaFvC3C3iHwe\nuB94BPijPufjOI4zeDay14qqPgm8INF/CHileX0bcNuKMXPAD/Tz/o7jOKeDQtzDCOKRnZscW7x3\netZuIj/TOdiwFpNLJLUBCtbMUuKeqJ19BRNFotqPFjYdjXviYqhGVLch/HmztWX1j4StYlSJWRmX\njcvgkrlW3Ni01zeXrxY2PqOro6noZDY+F8Im50mzUTlpNjsnjWllWyXb3J2SPOhpeyWf2FQrGzvV\nzDe6Ie3R4IwHvpA7jgPAcfNFHlMiO4ERt5H7Qu60KXx4w4e6yfGBXd+6Klot2HZPLC2nJYUnYIV4\nT9TZrKbVezXsPFaW07VGuyHGfVHqQZHXjCI3WbHaAUPmrao2F1gheChunOadLZMOYLmWnThnXBIn\nqrkin6rZzc5G4RlylQ4wJVl7u1Hse9cQQLXp2ASbnY7jbECWjl7Gkok32PQMaLNTRG4TkcdE5Isl\nx68WkWdCkOT9IvKmXqbnitxJEtX53oLdvHd13lpDsdqozot288S/pk0RWxJPFN0PtSw1bVC+laX8\neGU5V7bdlFchjW2700zRuCpGQVxpGhu9iU2qJgKFisFFJgAruCUuGpU+V7PVhDrt5VurueKeqnS2\nt4lV6fkOxp5qIsnYZmdwivy9wDsoiZcJ/K2qvngtF/WF3HEcZxWEwXmtqOonReSSwVwtxxdyZ1Ws\n3TylzsuCgE6FOSOtbcBQU4IyNbbwZO1M27ZBOgWVm12jZj1ZJky7bmzgQV23JksskNWE7d5OpVl8\nBjDCGa2b/tCuLqW9bVpBvjdMkNBCNY8+svU9j4egIevVUrSXZx4sU1aR2+OSpwB2TxbWaiPfKSKH\nzOsDISp9LfyQiPwjMAu8VlUf6HaCL+SO45TihSkCvS/kT6jqTB/v9DngYlU9KSLXAR8Gruh2ki/k\nTs+k1fnq/uZldLOhzxsJ1IjV2wqh7p2eKlk7HDddrYK/dnw2nixWnddzZRsFrVX0qVvspN3cjK0Y\n3/OylLdt9W42CirLdk8gFrkwqW+NIp+v5hObrGW+5pPGq2Vr1arvHeG5xM88TMILUxhOk9eKqh43\n7btE5A9EZKeqPrHaee614jiO04WYk7zbo+/3EdkV03mLyFVka/ST3c5zRe44Tk/Y/OVbp78+xJkM\ngQEpchH5AFk22J0icoSsetoEgKq+C3gJ8Isi0iArgXmDqnZ9d1/InVMi7Z6YNrOcyoaoGHkzH06v\nmz5bmb6RCgiyZpiEm581a9TMp6BSN1kTl7RwTSgGBMUPd1m2gpRCsyYfe7xtWjGmm0q9M7d5ywQy\nNU3w0KKpAHQymFmsS2IqU6INEioGDGXHt5sc5tPVqc4fZrOgA/VaeXmX4+8gc09cE76QO47jdGPE\nIzt9IXf6wm6A7jYeDqeyCVpWQT4K4nmTq3vZbmaKDZwJVXtsQFBBkaf67GanDbEPIfhms1JaVp2H\n8wvqv3MzsxCQVKbeg3g2XoCFse1NUHPHoCY1QGM5/4EWQv3PSZNg61jVBgxlbRswtMUGDAW3xKJK\nN9nAgM0WMjTqIfq+kDuOs2Y2nVuiL+TOZqHwgV6DOo829HJFnrVtVfmTYtV5bh9uhtL1hbD9RAKt\ngiI3yteG0LfD+U1fwYadsGu3UurfqvASRR6vpSZgKGUvV/OJbTWM+jdKvRFcFBfq+eCaUedT1c6k\nWilXxEJYvxxrtzedW+KQi0b0Ql/uhyJyroh8VES+Gp7PKRn3NyJyTET+akX/pSLymXD+B0VkMnW+\n4zijy8LRSwseLRsN4fS5H54q/Sry1wP3qOqtIvL68Pp1iXH/DdgG/IcV/W8Ffl9V7xCRdwE3A3/Y\n55ycESClzrulxLU1JqtGAkWlbivIW8We+1bAcrCjN20dT+PdoV3s1pVCOH+YSyFgyBwP0ymkti2o\n84QHTVk4f6v4XNa24f5l9vJm6F827jhLxkZ+PKhzG8JvA4aivXyLLUxRSLB1st3ea5T+RmbUbeT9\nBgRdD9we2rcDP5UapKr3UPy8EZzenw/c2e18x3FGn9ajz2o/NhwbuWYncKGqHgVQ1aMicsEazj0P\nOKaq0VB3BNjT53ycEaStzgt28051bhV5xcjR2K5V7PFOrxaAk5XMOrdovVqMXGkmvVps4Yl8bExq\npcZGXjGfmNz32yh2q5ijn3lZzQZrx4/TKVHk7UWi7Li1lzeyizUaJpy/YdR5M2vPN/K9hWP1be12\nys+8aC+3Sj2zp++qnsGGZsQVedeFXEQ+RjoJ2hv7fO/UTWbpr0tE9gP7Afbt21c2zHEcZ7CMQYWg\nrgu5qr6w7JiIfFtEpoManwYeW8N7PwGcLSK1oMr3kqVtLJvHAeAAwMzMzIj/Wh3H2VCM+IrTr2nl\nIHAjcGt4/kivJ6qqisgnyHIL3LHW853xo8w9cZLMta1gWjE2hLjxOVGy2WnNLNFF0ZpbFk0gUTMU\nzbT1MLWaNrPE7IPWnGJdEaO1wW5A2gj+ZFh3ypyCCR4qMcPkm6EmIMmk4FDTH9NENs1maN1mTQxu\nifMme+I2G+LfzDYwn25sb/cVzCk2U2IzuDKKrcKa2U03EoMK0V8v+t3svBW4RkS+ClwTXiMiMyLy\n7jhIRP4W+HPgBSJyREReFA69DvgvInKY7G//nj7n4zjOCDB39OL2YyOwod0PVfVJ4AWJ/kPAK83r\nHyk5/yHgqn7m4IwnVp1PhA97xSRpsu6Hk0Hylil2q8hrQTrZvhNGyS+GhFJ1I7NbZofTuirG7lat\nZDM0XMLmEO/qMljIk26uFRV5rbPPUlCGVoWbW4Eo1K1Kb5pk7nHjM256QnHjcyq4FM5Xc+V9wiTN\nerKRb2xGpb6tlf/tdhulvyEYg4Agj+x0HGddie6IlV0PDnkmfeALueOszvbpbwKw10QHVk3YwUSQ\nvCmXxKydf8pi6taU3RzyFK+FBFzGXm5t580gv6WQTjZhQzdBQgVFngjht+1CGoHwSSxLHdBW7DYN\nbuG6Zo6hbRV5y7QbQZ0vmRD+lL082soBtjVzRb6jktf0PNHK0mc91bQBQ/nxPdUdjDsxsnOU8YXc\ncRynC4U89COIL+TOyGCrzuw5elm7PSELQNFuXjU2cms7j23r1WJD+6Nit31z1TzFz1LVFKwIqr21\nbEP8rToPwUUFTxZrt86eCgUkCjZu0w7qu6wgRu7VYmzh1lUh9R5qVXo+uBXaTXOBlL18yoTfl9nL\ntzWz/m0mze2OVv4Ledp4s4ytJ4vbyB3HcTKWzJfzlumHhjiTteOmFcc5BewHfU/YLKuSJ2uqyNPt\ndjHZViZHq0b62tD+yRB+bivMT5j2SaPOF4Iirxt7elThAK3lrN/6obeMw0b0Zin4fpekqW0XqUio\n8Kw/vFetsw9WqPP4frYqnU3mFZR603q1GMW+HN54sdnpWw5Fe3kM4z9Trd08/x1uC/by6eqYl6Lw\nhdxxHGe8cUXuOI4z7vhC7jj9Ef2Pd9u+R/JXk+RmlmhSsaYVa3qJmf0mC+YWY5oxm6DVYFKxror1\nem7viO6JLZMLXExYvAT3xLINzqRbonUjtKaTWqLPmlNMf7utnS6J2YvwVsacYk0rjdBeNradhYKZ\nJTetnFHNTCfHrbnFbnwG08tJuyMMjFUWcx39EH1fyB3HOe2M08an+5E7zjqxa0+eKHNidm+7XQm1\nJcvcE2P1m4LLolHk3VwVF5ZzZboUKvDYCvatmm0HRV632bHypiRUciGc39De7OymwgHiHUI1vfrE\n4CC72Wnyb7XVeaOg0k3SLeOqGNW5zV2e2vjcZoKExnLjUwezkovIbcCLgcdU9Z8njgvwduA6YB64\nSVU/1+26/SbNchzH2fAMMGnWe4FrVzn+E8AV4bGfHktfuiJ3xp7zdh9pt6shPW6VZ9p9qYChlN0c\ncvdE254s1LvMbcELIZR90QQR1U2dzGZwVbQqXZs23awNHoph9drRV6CbCjf9Yu4kJKHOCzZyI/Ub\nod0yNvaGOV637aDU543LYcpevsMo9rGzlw8wIEhVPykil6wy5HrgfaqqwKdF5OxY82G16/pC7jjO\nUBkHe/kaNjt3isgh8/pAKIrTK3sAk7i/XQLTF3Jn8xDT41Zm83KAEyY97gSZup4qVIU39ShNBqxu\nHi7tavQ2iKiWH49V7Ou1fBVo2nD/go08tAvJr/LDEtW7FekJFQ65ErcqvFI1ScZCf8Uo9lRwkFXh\n1kbeKqjzauEZYEnzfYR5zX5HqSAhGB97+RoW8idUdaaft0r0db0f8IXccRxnNZSBbXb2wBHAVilf\ntQRmpK+FXETOBT4IXAJ8A3ipqj6dGPc3wHOBv1PVF5v+9wI/Cm2D5k2qen8/c3IcgDN3P9xuT5j0\nuBPMATBlbOGFCvEFRV4Pzw3TZ23omfo+WTN9NaPOQ2rYJWM3t+1mw5SYCyq4EEpvikHkit38kOZw\nyh6eUuEAtWDzr1U7feYBNLxXwWulzEYelLhV6csmj8BiyFkwV8l/L/M6fvby0+h+eBB4jYjcATwH\neKabfRz691p5PXCPql4B3BNep/hvwCtKjv2aql4ZHr6IO44zemiPjy6IyAeATwHfEcpe3iwirxKR\nV4UhdwEPAYeBPwJ+qZfp9WtauR64OrRvB+4lq8NZQFXvEZGrV/Y7juNYFsLdk01pPGwGGRCkqi/v\nclyBV6/1uv0u5BdG2a+qR0XkglO4xltE5E0ERa+qS91OcJy1YBeFvY9eDsBUM8+TPRWCiLJ2vaPd\nbTP0WD3fsJuq5maWmElxwdTDXDDV6hdNcFGsqdkqhNXnpo9WouqPdWVMbWymzClZu1V4hmLQU0xT\nYOdScEU0G5+xbTc7bbsZbvpt35zZDD3Ryj/uFxrXzpFCdfwLS4jIx4BdiUNvHMD7vwF4FJgEDpCp\n+VtK5rGfzEGeffv2pYY4juOsD6O9jndfyFX1hWXHROTb0VldRKaBx9by5saIvyQifwy8dpWxB8gW\ne2ZmZkb81+qMKrVdh4GiMpmazZ0EpoyrYluRGxWeCi7aYlT41rpR77EafSPf6LP5zueNSo6V7ZuF\nOps2qVUMq7cbpOmanFGJp1S4bRfSEZixk9XOQKiy4KBm8Jart9KKPLbtBqi9Vt14281r/rsbNafE\nUc+10u9m50HgxtC+EfjIWk4Oi3/ML/BTwBf7nI/jOBuAxqOXtx9DR4GW9vYYEv3ayG8F/kxEbgYe\nBn4GQERmgFep6ivD678FvhM4Q0SOADer6t3An4rI+WT7CfcDr0q8h+OsKzGICGBLwVUxqxU6UUiJ\n2+m2uMUo9q2VbXk72HznarlT3ZSxA580Sn6unil1q2yt+q7HOpuF2pvpCj/R5TmlwiFX4ikVnrWz\n/kIgVDWdzStlI+8WMLRcUOzmriLYL86pjJoeZ/xNK6uhqk8CL0j0HwJeaV7/SMn5z+/n/R3HcU4H\no25a8chOxzGcioeL9Wqx6Vy3hfDzZxpGpdvgI6POp0JQ0bzxcFludqrzgn3aBuyY4KGmdlpMU/bw\nlAqHXIkX+zoDoQAq4W6lzGsl2sabxopbx4616r1ZeG7PveOnOf2MvdeK4zjOpmaA2Q/XC1/IHaeE\nXj1cyvzMt1cyH2mr0k8aFb61umzaWf8Jc9xWsW8kij0sF/y5OxW5VeyWlFdKyh5epsLtvKMvvfXm\nSanzuvFaKfqZ5zby5WDcX6nIh20xzwKCRnsl94XccRynG16z03EcZ7xxRe44G4iUq+KULLT7pox7\nYqyOs62Sh6GfMK51xY3RrL21mptm5hq522KsYl+WI7zYn7XLTC9x47PMvXAykYc9ZU6xbdtnzSzR\nFTG1Abqyv052jdaoGaTdRu44jtMfNigo7lucXjZArhXHcdJEV8U9jz6r3Tclc6Z9HIDtJjHUMaPO\nt5v2tsTGqN34PN7I2lbBNlppN77lVq3jeEqxW5fE1MZmNxVu23aT1/4MMViqmQgSgnRwUN0YpEcm\nOMhNK47jOGOMrqnU21Dwhdxx+qSy68F2+3zTPxFcFbcZG/p246p43NSuzBV5rtLPMPUsY3DRfDO3\nmxfqZLbyj3IeNm8r/BjlG45bG3rKHt5NhUOuxFMqHNKJxyyp4CDrfjgywUGuyB3Hccac0V7HfSF3\nnPUierhsPXpZu8/axXe0cnv69tZyx/FjzU57+jGTlGuplQcMJYNwjOK2le1jAq5ioqs8MCfliZJS\n4ZAr8ZQKt2OnZLmjD6BqVsgYHLRs1O+oBAdJa7RtK76QO47jrIbiAUGOs9nZMv1Qu21t6GeYlLnR\n53y7KWyx3ajY463Mnl7wSW/m+jSlyBe1RLEHe3pZoquozrup8GzM6uXwohIvpC6w6lw61bktNjEK\nPuWCekCQ4zjO2OMLueM4zmCIwUGnPTBoIy/kInIu8EHgEuAbwEtV9ekVY64E/hA4E2gCb1HVD4Zj\nlwJ3AOcCnwNeoarLOM4mwOY+j0aSbbN5YfFtldw9cUfcDC0JLlo0G5+LGqoNdckRXnRfTJth8rn0\n7l6Y2tgsM6fYlAZTIbR/wphTRiI4aAxs5P3W7Hw9cI+qXgHcE16vZB74eVV9NnAt8DYROTsceyvw\n++H8p4Gb+5yP4zjOwJFWq6dHT9cSuVZEviIih0WkY80UkZtE5HERuT88Xpm6jqVf08r1wNWhfTtw\nL/A6O0BVHzTtWRF5DDhfRJ4Bng/8rDn/N8nUu+NsSs7c/XC7vc3kGNkWgofKgouOSa5WlzUbWwy2\nyT/qUb0XwuMrnYmsrDKvmFpna3EvjEq8mwoH2BLeY3sl15dbzM/QVFN3lNOJDsy0IiJV4J3ANcAR\n4D4ROaiqX1ox9IOq+pper9uvIr9QVY8ChOcLVhssIlcBk8DXgPOAY6oa/6pHgD19zsdxHGewKNlC\n3sujO1cBh1X1oWBGvoNMEPdF1y82EfkYxSIpkTeu5Y1EZBp4P3CjqrZERBLDSn8TIrIf2A+wb9++\nsmGOs2GwG3rnheczSoKLtrVOttvzMQTfqNlFE8Jfr6Qq23cq8mhrXznWpqnt1b2wmwrPfp5MV1oV\nvkWKS5R15Tyt9G4j3ykih8zrA6p6wLzeA3zLvD4CPCdxnZ8WkecBDwL/WVW/lRjTputCrqovLDsm\nIt8WkWlVPRoW6sdKxp0J/DXwG6r66dD9BHC2iNSCKt8LzK4yjwPAAYCZmZnR3kJ2HGdDsQY/8idU\ndWa1SyX6Vl78fwMfUNUlEXkVmdn5+au9ab+mpoPAjcCt4fkjKweIyCTwIeB9qvrnsV9VVUQ+AbyE\n7PYieb7jODllwUXbjl7cbj8TVPCi5iq4blTyMjFEP51aNgYSRVs7lNvbJ4LS7uaV0k2FQ67ER0aF\nWwbnfngEuMi87hCwqvqkeflHZE4hq9KvjfxW4BoR+SqZ8f5WABGZEZF3hzEvBZ4H3GR2Ya8Mx14H\n/BcROUx29/iePufjOI4zWFSh2ert0Z37gCtE5NIgcm8gE8RtgnUj8pPAl7tdtC9FHr45XpDoPwS8\nMrT/BPiTkvMfIjP+O47TB9unv9lubw2FLk62rKLOF5l68P5YtOliMeo9hHIUilWU2NtbQQt280rp\npsKzMfl1R0KFWwakyFW1ISKvAe4GqsBtqvqAiNwCHFLVg8B/FJGfBBrAU8BN3a7rkZ2O4zjdGGBk\np6reBdy1ou9Npv0G4A1ruaYv5I7jOKuhgNfsdBzndBIrFp1ZcnwpuDA2sJV4jOklmGFsLvBuG6c2\nn/lagnxGcmOzAwUd7Rh9X8gdx3FWQ+l1I3No+ELuOJuMqHq3lBxvhc3SJc03MAt1NBMbp3Vb6cdY\nIUY6yGctbOTsh47jOJsCX8gdxxknoo3dJo0tSyDbzd5eCYGMY6nC2wwuadZ64Qu54zjOaijgxZcd\nx9mo9Gpvh1zpjyWuyB3HccYZda8Vx3E2L2OtwiMK6n7kjuM4Y45HdjqO44w5biN3HMcZY1Tda8Vx\nHGfscUXuOI4zzijabHYfNkT6qhAkIueKyEdF5Kvh+ZzEmCtF5FMi8oCIfF5EXmaOvVdEvp6oHOQ4\njjMaxDS2vTyGRL+l3l4P3KOqVwD3hNcrmQd+XlWfDVwLvE1EzjbHf01VrwyP+/ucj+M4zuDRVm+P\nIdHvQn49WYVnwvNPrRygqg+q6ldDexZ4jGLdWMdxnJFFAW1pT49h0e9CfqGqHgUIzxesNlhErgIm\nga+Z7rcEk8vvi0hZpK/jOM5wUB15Rd51s1NEPgbsShx641reKFSGfj9wo+ZhUm8AHiVb3A8ArwNu\nKTl/P7AfYN++fWt5a8dxnL4Y9c1O0T7cakTkK8DVqno0LNT3qup3JMadCdwL/J6q/nnJta4GXquq\nL+7hfR8H5oAnTnnyg2cnozUfGL05jdp8YPTm5PPpzlrndLGqnrI5V0T+JrxnLzyhqtee6nudKv26\nHx4EbgRuDc8fWTlARCaBDwHvW7mIi8h0+BIQMvv6F3t5U1U9X0QOqepMn/MfGKM2Hxi9OY3afGD0\n5uTz6c7pntMwFua10q+N/FbgGhH5KnBNeI2IzIjIu8OYlwLPA25KuBn+qYh8AfgC2Tfe7/Q5H8dx\nnE1HX4pcVZ8EXpDoPwS8MrT/BPiTkvOf38/7O47jOP0r8mFyYNgTWMGozQdGb06jNh8YvTn5fLoz\ninMaKn1tdjqO4zjDZ5wVueM4jsMYLOQicq2IfEVEDotIRwqAEEgUN1EfFJFjQ57PPhH5hIj8Qwh0\num7I87lYRO4Jc7lXRPau83xuE5HHRCTpgSQZ/yPM9/Mi8v3rOZ8e5/SdIR/Qkoi8dgTm83Phd/N5\nEfl7EfneEZjT9WE+94vIIRH5V8Ocjxn3gyLSFJGXrOd8Rh5VHdkHUCWLAr2MLGjoH4HvXmX8LwO3\nDXM+ZPa7Xwzt7wa+MeT5/DlZEBbA84H3r/Pf7HnA9wNfLDl+HfB/AAGeC3zmNPwfdZvTBcAPAm8h\ni2UY9nz+JXBOaP/EiPyOziA3xX4P8E/DnE8YUwU+DtwFvGS9f0ej/Bh1RX4VcFhVH1LVZeAOsvwu\nZbwc+MCQ56PAmaF9FjA75Pl8N1lCM4BPJI4PFFX9JPDUKkOuJ4spUFX9NHB2CCYb2pxU9TFVvQ+o\nr+c81jCfv1fVp8PLTwPrehfV45xOalg9ge1k/+dDm0/gl4G/IMvftKkZ9YV8D/At8/pI6OtARC4G\nLiX7hh7mfH4T+HcicoRMKfzykOfzj8BPh/a/AXaIyHnrOKdu9Pw3dQC4mewOZuiIyL8RkX8C/hr4\n90Oeyx6y/+d3DXMeo8KoL+SS6CtTAjcAd6rqeiZF6GU+Lwfeq6p7ycwI7xeR9fo99zKf1wI/KiL/\nAPwo8AjQWKf59MJa/qabGhH5MbKF/HXDnguAqn5IVb+TLAr7t4c8nbcBr1vnz/vYMOoVgo4AF5nX\neyk3VdwAvHoE5nMzWd51VPVTIjJFFrW6Hrd/XeejWergfwsgImcAP62qz6zDXHplLX/TTYuIfA/w\nbuAnNAu8GxlU9ZMi8s9EZKeqDisPywxwR5bdg53AdSLSUNUPD2k+Q2XUFfl9wBUicmnI2XIDWX6X\nAiLyHcA5wKdGYD4PE6JdReS7gCng8WHNR0R2mjuCNwC3rdNceuUg8PPBe+W5wDMaUiE7GSKyD/hL\n4BWq+uCw5wMgIpeHnEgET6NJYGhfMKp6qapeoqqXAHcCv7RZF3EYcUWuqg0ReQ1wN9kO9W2q+oCI\n3AIcUtW4aL0cuMNsxgxzPr8K/JGI/Gcyk8FN6zWvHudzNfB7IqLAJ1nnuxYR+UB4z51hn+DNwESY\n77vI9g2uAw6TVY/6hfWcTy9zEpFdwCGyTeqWiPwKmffP8WHMB3gTcB7wB2HtbOg6J4nqYU4/TfYF\nXAcWgJet5+eth/k4Bo/sdBzHGXNG3bTiOI7jdMEXcsdxnDHHF3LHcZwxxxdyx3GcMccXcsdxnDHH\nF3LHcZwxxxdyx3GcMccXcsdxnDHn/wNrOZriefFoggAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"a,b,g,r=m.mncontour_grid('a','b',nsigma=3)\n",
"pcolormesh(a,b,g)\n",
"colorbar()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Нарисуем на одном графике экспериментальные точки, наш фит (сплошная линия) и истинную теоретическую кривую (пунктир)."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjeX/x/HXNWMsY8m3jCXLjD1SX2pQyBKKEn3pWzKl\nRU1l+SWSIhlbZatsJUQqJSlLpaSsX2UZEdmXLIPsW4ZhzPX74x6apmEOnTNnzn3ez8djHs59n8s5\nn9uM99znuq/7uoy1FhERcZcQfxcgIiLep3AXEXEhhbuIiAsp3EVEXEjhLiLiQgp3EREXUriLiLiQ\nwl1ExIUU7iIiLpTDX29cqFAhGxUV5a+3FxEJSCtWrDhorY3IrJ3fwj0qKor4+Hh/vb2ISEAyxuzw\npJ26ZUREXEjhLiLiQgp3EREXUriLiLiQwl1ExIUU7iIiLqRwFxFxIYW7iIgLKdxFxH/q13e+xOsU\n7iIiLqRwFxFxIYW7iIgLKdxFRLJSFl1nULiLiLiQwl1ExIUU7iIiLqRwFxFxIYW7iIgLKdxFRFxI\n4S4i4kIKdxGRLLJuHTRb8xrxJyr6/L0U7iLiH5MmwZIlsGABREU52y61bx888wzceCP879gNbDtV\nzOfvmWm4G2PGG2P2G2N+vcjzxhgz3BizxRiz2hhzk/fLFBFXmTQJYmMhKcnZ3rHD2XZZwJ86Ba+9\nBuXLw7hxTsBvqRnD/YXn+/y9PTlzfx9oconnmwLlU79igXf+eVki4mo9e0Ji4l/3JSY6+10gJQU+\n+ggqVoQePaBBA/j1VxgxAgqFHcuSGjINd2vtQuDwJZq0AD6wjiVAQWOM7z9ziEjg2rnz8vYHkIUL\noWZNePhhiIiAefNgxgwn6LOSN/rciwO70mwnpO4TEclYqVKXtz8AbNoE//kP1KsHe/fCxImwfPlf\n5wg7MHYYSct+zJLrDN4Id5PBPpthQ2NijTHxxpj4AwcOeOGtRSQgDRgA4eF/3Rce7uwPMIcOwbPP\nwvXXw/ffQ//+TtC3bQshaRL2+ITRhHfoTK5TZ50dPr7O4I1wTwBKptkuAezJqKG1doy1NtpaGx0R\nEeGFtxaRgBQTA2PGQK5cznZkpLMdE+Pfui5DUhIMHQrlysHIkfD447B5s3PZ4PzvrSOnjvDxmo8B\nKNDndfKeTfciPrzOkMMLrzET6GiMmQzUBI5Za/d64XVFxM1iYmDsWOfx/Pl+LeVyWAtTp8KLL8K2\nbdCkCQweDFWq/Nnm5JmTDF86nEE/DuJ40nFqlaxFVBZfZ8g03I0xnwD1gULGmASgNxAGYK0dDcwC\n7gK2AInAYz6pVETEz5Ysga5d4ccf4YYb4LvvoHHjP59PSk5izIoxDFg0gH0n93FPhXvo16AfUQWj\nnOsJO3b8/UV9dJ0h03C31j6YyfMW6OC1ikREspnffoOXXoJPP4WiRZ0PHI89BqGhf213POk4Peb2\n4OZiN/PFA19Qq2StP58cMMDpY087BNSH1xm80S0jIuJKR4862Tt8uBPkr7wC3bpBvnzO8yk2hS/W\nf8GMjTP44N4PiMgbweqnVxNVMApj0o01OX89oV07p8M+MtJ5cR9dZ1C4i4ikc/YsjB4NffrA4cPw\nyCPOKJjiqYO8rbXM3jqbnnN78vPen6lUqBL7Tu6jaL6ilP5X6Yu/cBZeZ1C4i4ikshZmzoQXXnCG\nM95+uzMipmrVP9vsOraLmC9iWLRzEaULlmbivROJuSGG0JDQi7+wHyjcRUSAFSuci6ULFsB118GX\nX8Ldd8P53pUTSSfInys/EXkjSDqXxKi7RvHETU+QMzSnfwu/CIW7iAS1XbucoeYffgiFCsGoUfDk\nkxAW5jy/8eBGXpn/CksTlrKx40Zy58jNknZL/t6nns0o3EUkKJ04AQMHOt0u1kL37s6ImKuucp7f\neWwnfRf05f1V75M7R24639KZ5JRkcpEr2wc7KNxFJMgkJ8P48c7Il3374MEH4dVXnalezluzbw3R\nY6MB6FSjEy/d9hKF8xb2T8FXSOEuIkHj22/h+edh7VqoXduZrbFmTee5o6ePsmLPChqWaUiVwlXo\nVbcXbf/dllJXBeZkZlqJSURcb80auPNOaNoUTp+Gzyv3YlFofWrWdKYKeP1/r1N6WGlaTmnJH2f+\nwBjDy3VfDthgB4W7iPjT/Pk+He+9d69zcbRqVWf63TffdNYxbRmxiDMhKYxcNpKyw8vy0g8vUbtk\nbRY8uoB8OfP5rJ6spG4ZEXGdkyedC6WDBsGZM86UvC+/DFdf/WebdXlP0umbTtSNrMvn939O7VK1\n/VewDyjcRcQ1zp1zhjT27Al79kCrVvD66860vNZaPl/3Bb/u/5XeQLU/8vNz7M9ULVo1IEa/XC51\ny4iIK8ydC9HRzoRexYvDokXO1Lxly1pmb5lN9bHVue+z+5i6fiqnQ1IAqFasmiuDHRTuIhLgNmyA\ne+6Bhg3hyBH4+GNnat46dWDDwQ3Un1ifJpOacOjUId5v8T6rnlpF7hQ/Rp+PrzOcp24ZEQlIBw5A\nXBy8+y7kzet0vzz7LOTODWfOnSEnOcmXMx87j+1kZNORPHnzk9l2qgBfULiLSEA5fRqGDXNuPDp5\nEp56ygn5iAjYdGgTvb7qxcHEg3z/8PeUKFCCLZ22ZLtJvbKCumVEJCBYC5984kzq9eKLULeuM359\n1Cg4lXMnT8x8gsqjKvP1pq+5tcStnLPnAIIy2EFn7iISABYvhi5dYNkyZ8z6+PHOdLwAc7bOodkn\nzQDoWKMjL9V5iSL5ivix2uxBZ+4ikm1t3Qr33edcHE1IgAkTID4ebqp1lNX7VgNwa8lbefrmp9nU\ncRNvNXlLwZ5K4S4i2c7hw/Dcc1CpkjMfTJ8+zuIZ/21zkiE/DaTMsDLc/9n9pNgU8uXMx7Cmw4gs\nGOnvsrMVdcuISLZx5ozTh96vHxw7Bo8/Dn37wjWFzzB2xVj6L+rP73/8zl3l72LA7QMIMTo/vRj9\ny4iI31kLn38OlSs7fevVq8OqVc5yo8WKwfQN0+n4TUfKX12eRY8t4us2X1O1aNXMXzgjkyY5A+EX\nLHDm+Z00yavHkl0o3EXEr5Ytc0a+3HefM0b9m2/g228tm0I/Z+KqiQC0qtSKuW3nsuDRBdQpVefK\n32zSJIiNhaQkZ3vHDmfbhQHvUbgbY5oYYzYaY7YYY17M4PlSxph5xpiVxpjVxpi7vF+qiLjJjh3Q\npo0zn/rmzc7NSCtXWkLKf3dhqoCxP4/FWktoSCgNSjf451MF9OwJiYl/3ZeY6Ox3mUzD3RgTCowC\nmgKVgQeNMZXTNXsZmGKtrQa0Bt72dqEi4g7HjjnL2VWsCNOmObm6eTPUaL6KxpMacOdHd3Iw8SAT\nWkxgwaMLvDv3y86dl7c/gHlyQbUGsMVauw3AGDMZaAGsS9PGAgVSH18F7PFmkSLiQ/XrO3/6eL6T\n5GQYMwZ694aDB6FtWxgwAK4tnkKICeHE4RNsOLiBEU1H8ORNT5IrRy7vF1GqlPORIaP9LuNJuBcH\ndqXZTgBqpmsTB3xnjOkE5AUaeaU6EQl41sLXX0O3bs4kX/XrO3Ot54vcRLf5vSmUpxAj7hrBbZG3\nsb3zdnLnyO27YgYMcPrY03bNhIc7+13Gkz73jD4T2XTbDwLvW2tLAHcBHxrz9zFKxphYY0y8MSb+\nwIEDl1+tiASUVaugUSNn1saUFJg+HSZO28U7CU9SeVRlvtz4JYXCC11o79NgB4iJcT4+5Er9VBAZ\n6WzHxPj2ff3AkzP3BKBkmu0S/L3bpR3QBMBa+5MxJjdQCNiftpG1dgwwBiA6Ojr9LwgRcYndu52V\njyZOdFY/GjHCmeDrsw0fU37kY4AfpwqIiXHGWEKWTL3rL56E+3KgvDGmNLAb54Jpm3RtdgINgfeN\nMZWA3IBOzUWCzB9/wODBzte5c/D889Ch61FM7uOEhZWiZvGaPHzjw/Sq20t3lPpYpt0y1tpkoCMw\nG1iPMypmrTGmrzGmeWqzrsCTxphfgE+AR621OjMXCRLnzsF770H58s4dpc2bw8pfE7mm+UCqvV+G\n9l+3B6Ds1WUZ13ycgj0LeDT9gLV2FjAr3b5X0jxeB7hrdVkR8cicOc4Z+urVUKsWTPn8DGvCxtFw\nZr8LUwX0a9DP32UGHd2hKiJXZO1aaNoU7rgDTpyAKVPgf/+DxSlv0GFWB8pfXZ6Fjy7k6zZfU61Y\nNX+XG3Q0cZiIXJZ9++CVV2DcOMifHwYPtpS8YxoRBa7GmPo8Hf00VYtW5c6yd7p28elAoDN3EfFI\nYqIzHLxcOWexjI6dLOPmfcenV9Wg9bRWjFw2EoCCuQvSpFwTBbufKdxF5JJSUuDDD53pAl5+GRo3\nhk8WLuOXqg3478w72X9yPxNaTGDyfZP9XaqkoXCX7Kl+/T9viw8W2fCY5893pt9t2xaKFnVmyf3i\nCzicc9WFqQI2ddzEo1UfJUeIenmzE303RORvNm6EF16AmTOhZEkYMn4zy/O/wq95bqMu7Xms6mPE\n3BBD3px5/V2qXITCXSSYnV+4IikJoqI4/uIAeq6NYfRoyJMHXhiwiwOV+tF9zXhy5chF9WujAQgL\nDSMsNMzPxculKNxFglUGC1fkeCaWIwaefDqGkq1G0uen57FrLR2qd6DHbT20+HQAUbiLBKsMFq4I\nJ5H3ir5ErrdjmLO1Im3+aEPver3dd0epi+eUOU/hLhKk7M6dGU75mvN3Z4bvxmUb07hs46wtSrxG\no2VEgsy2bXD//bDDZrxAxZlri2ZxReILCneRIHHkiDMHTKVKzuIZK1oOIClXug/v4eHkGjjEPwWK\nVyncRVzuzBkYPty5s3ToG5Y6T0zn2+WbaPV5DAffepVTecKc1XdcvHBFMFKfu4hLWeusfNS9O2ze\nbKnW6geK3daDuUeXc8POZ7mt8lsUf7obTP7a+QtBcJExmOjMXcSF4uOdm11btoSzRZZw49CGrLyh\nMSfsPsY3H8+QO9T14nY6cxdxkZ07oUcPZwh7RAS88w6sj/yUyWvXMrzJcGJvjiVXjlz+LlOygMJd\nxAWOH4fXX4c334RzBTdTuVdvXr//Ce6pcjvHTsfxasP+miogyKhbRrKf87fEL1gAUVHOtttd4TEn\nJ8Po0c7ydq+NSqDEM7GkPFOJ7bln8HvSVgCuyn2Vgj0I6cxdspcMboknNtZ57NZRHFdwzNbCN99A\nt26wbh1EPjyAnOX7sYMU2ke3p8dtPSiaT+PVg5nO3CV7yeCWeBITnf1udZnH/MsvztJ2d7c8RtLZ\nZKZNgy4dCtDmxgfZ1GkTw5sOV7CLztwlm9m58/L2u4GHx7xnD/TqBeM/TCRPvVGE93id7ncN4d7o\nx4BOvq9TAorO3CV7KZXxLfEX3e8GmRzzyZPQpw+Uq3iG99e+Q96XynGqzgvUK1uT6iW08LRkTOEu\n2cuAARAe/td94eHOfre6yDGn9BvA+PHOxdK4OCgY24qUpu2pGlmGhY8uZFbMLKoWreqXkiX786hb\nxhjTBBgGhALjrLWvZ9DmfiAOsMAv1to2XqxTgsX5C4jt2jkXGCMjnfBz68VUyPCY1zw4gJghbViT\nNIPoMg2YOrUAp4s9R1Jyey0+LR7JNNyNMaHAKKAxkAAsN8bMtNauS9OmPPASUNtae8QYU9hXBUsQ\niImBsWOdx8FyS3zqMa87GUm3whOZNeV7cjatCRHLad14KLVqdQFu93eVEkA8OXOvAWyx1m4DMMZM\nBloA69K0eRIYZa09AmCt3e/tQkXcbP9+iNvcmXdDIjA3NoQacymcvyR9GrxH23+39e2bB8sv0CDj\nSbgXB3al2U4AaqZrUwHAGLMYp+smzlr7rVcqFHGxU6fgrbfgtdfg1B/NKP54NKcr7OXlesOIvTmW\n3Dly+7tECVCehHtGnXs2g9cpD9QHSgCLjDFVrLVH//JCxsQCsQCl3Dz6QSQTKSnwySfQ7bUt7K3Q\nl0Z39mXkjl6E78rNv97eSr6c+fxdogQ4T0bLJAAl02yXAPZk0GaGtfastfY3YCNO2P+FtXaMtTba\nWhsdERFxpTWLBLRFi+Cm+gk8NPkp9ra6jtzVPufpPiuoGL6Lkkm5FeziFZ6E+3KgvDGmtDEmJ9Aa\nmJmuzXSgAYAxphBON802bxYqEug2b4b/tLTU7fsiv9QrR2j0BDrUfIbfnttKq8qt/F2euEym3TLW\n2mRjTEdgNk5/+nhr7VpjTF8g3lo7M/W5O4wx64BzQDdr7SFfFi4SKA4dgt79TvHuqDzkzm2o0e0Y\n5Su3pn+jOKIKRvm7PHEpj8a5W2tnAbPS7XslzWMLdEn9EhGcIetvjTxF3KxRnI5+nRZPfcXol2+h\nSJG3NU5dfE5zy4h4mbUw+bOz/N/48Ry8vi/U3UPtIncyoGV+ihaGjMcoiHiXwl3Ei5YuhS5dLT9e\nfyvcuoLK+WvxdsuPqRdVz9+lSZBRuIt4wbZtlscHzGHBhEYULRLCY//txH+aRNCsQlN1wYhfGKe7\nPOtFR0fb+Ph4v7y3iLccPQpPvf4Dnx3ugS2+jP+em8b4F+4ln0Yzio8YY1ZYa6Mza6czd5ErcPYs\nvDhyCcPX9iS55FzyFilJ3G3v0bl+M3JorlXJBhTuIpfBWvjyS+jW/Ryb7oghrMgJul7/Jv3vfVpT\nBUi2onAX8dCMRVtp/+FQ9rw/hOvKhjOiznQeaV6a/LnUByPZj8JdJBPLN+7moTH92JT3PSgcRudB\nDzCoQz3Cwm7wd2kiF6VwF7mIQ0fP0OzNHiw5NwrynuMm+xQft+9JxWuL+bs0kUzp0o9IOqfPJDNm\nDFS+LowlO+MpnfgAi+7fxIp+IxXsEjB05i6S6tTZU3T6aBQfbBjO2beXUvvfxZj21Bxq3RLm79JE\nLpvCXYLe2XNn6ffVeAYt7UtSrj3kOdqYN949SYcHwRgFuwQmhbsEtW27Eqn2blWOh20m9FAt2peb\nxJsj6pMzp78rE/lnFO4SdKy1LP5tBfMmRTNwYDinarah+U3RjH/1bq65RlMFiDso3CWofL91Lk9N\n6cG2M0vh7dW0vPMGBg6Mo1w5f1cm4l0KdwkKSxOW0v7znvx89Ac4VpKoHeMYP6USDTRZo7iUwl1c\nb/nqY9Se2pBzp8MpuOZN3ox5mrZDchOigcDiYgp3caWth7fy7pKP+OPrVxjz7lXkrPgl3R+K5oUv\n8pMnj7+rE/E9hbu4yu7ju+kzrz/vrRpHytkwQqa25qnYisTFNaBwYX9XJ5J1FO7iCieSTtBnQV+G\nLxnJ2eRzsCKWRrleZvj8YlSq5O/qRLKewl0CmrUWYwzLluRgxNxPObvxfirtj2Nkv9Lcfru/qxPx\nH4W7BKRTZ0/x9vK3+eDnTykz/39M/zwPRUut57U+eXn4YQgN9XeFIv6lcJeAcvbcWSasmkDcvL7s\nPbkbs/UONi86RJ8+xejaNS958/q7QpHswaNwN8Y0AYYBocA4a+3rF2l3H/AZUN1aqwVSxasSjidQ\nb0J9th3dSuieW2HOhzx+ewP6rYJimqxR5C8yDXdjTCgwCmgMJADLjTEzrbXr0rXLD/wfsNQXhUpw\nstay9chWyv6rHEvmXMuBn2vBkrdoEHk3Q6cbbrzR3xWKZE+enLnXALZYa7cBGGMmAy2Adena9QMG\nAc97tUIJWvN+m0ePuT1Y8/s6bvhhG0vmXUPlyh8w5C1o0gSMpoERuShP7tErDuxKs52Quu8CY0w1\noKS19isv1iZBatnuZTT+sDG3f3A7q39L4OQXQ9m6vgCjR8Mvv0DTpgp2kcx4cuae0X8je+FJY0KA\nN4FHM30hY2KBWIBSpUp5VqEElc2HNlNzXE3y2EKE/vAG51Y+Q8/OueneHfLnz4IC6td3/pw/Pwve\nTMR3PDlzTwBKptkuAexJs50fqALMN8ZsB24BZhpjotO/kLV2jLU22lobHRERceVVi6tsPbyV8SvH\nk5wMcz4tT/7Zn3DqtW20Kf0cm9fnpn//LAp2ERfx5Mx9OVDeGFMa2A20Btqcf9JaewwodH7bGDMf\neF6jZSQzu4/vpv/C/oxbOY4w8vD6Iy3ZvKYg9eq1ZuiPcPPN/q5QJHBlGu7W2mRjTEdgNs5QyPHW\n2rXGmL5AvLV2pq+LFHc5cuoIry56lZHLR5J8Lpkiu59k9ycvY4oVZPp0aN5cfeoi/5RH49yttbOA\nWen2vXKRtvX/eVniZifOnGDkslEUP3Y/W9/rzemQMox4FZ56CsK0ZKmIV+gOVfG5U2dP8U78Oyzf\ns5yxd37Ce2+Uwozawa4TEXR7Fnr0gIIF/V2liLso3MVnzk8V0HdBX3af2E2lXI0o99xJ9u3Ky/33\nR/D661C6tL+rFHEnhbv4xJp9a2g5pSVbDm+hcv5bybXwI9bPrc+tt8L0KXDLLf6uUMTdFO7iNdZa\n9p/cT5F8RYgqGMU1oaUosOENfp7cjNKlDVOmwH336WKpSFZQuItXzN8+nx4/9ODI6SN833INfePy\ns3zcD+TPD0OGQMeOkCuXv6sUCR4Kd/lHlu9eTs+5PZmzbQ7X5itO9cTeVKwISaecQH/lFbjmGn9X\nKRJ8FO5yxeb+NpeGHzSkUHghHrx6KAuHtmfGjtzcey8MHAgVKvi7QpHg5cn0AyIXbDuyjW+3fAtA\nvch6dCo3jBJTt/HJ/3WhWERuFiyAadMU7CL+pnAXj+w5sYf2X7en4siKxH4Zy7oNybRqGcqIh/6P\nQ3vz89FHsHQp1K3r70r/gUmTYMkSWLAAoqKcbZEApW4ZuaRDiYcYuHggI5aNIDklmYcrPwkLX+bf\nN+QgTx549VXo3Bny5PF3pf/QpEkQGwtJSc72jh3ONkBMjP/qErlCxlqbeSsfiI6OtvHxmlssu5u/\nfT63T7ydB69/iFLb4njn1TKcOOHkXlwcFCni7wq9JCrKCfT0IiNh+/asrkbkoowxK6y1f5t1Nz2d\nuctfnE4+zTvL3+FY0jHi6sdRL7I+w8tuZWi30ny8He66CwYPhsqV/V2pl+3ceXn7RbI59bkL4EwV\nMHbFWMqPKE+X77qwYu8KFv+YQu3a0Onh0hQoAHPmwNdfuzDYAS62eIwWlZEApXAXFu9czPVvX0/s\nV7GUKFCCDxv9QJ5pX1Kndgjbt8N778HPP0OjRv6u1IcGDIDw8L/uCw939osEIHXLBClrLSfOnCB/\nzvwUzluYfDnz8XGzmcR/0ox27Q05ckDv3vD885Avn7+rzQLnL5q2a+dcVI2MdIJdF1MlQCncg9D5\nqQIK5y3M9NbTicxfnkdOr6DjHYYjR+DRR6F/f7j2WoJrTdGYGBg71nkcDMcrrqZumSASvyeeOz+6\nkwYTG7Dz2E6alruLadMsVapA586Gm26ClSth/PjUYBeRgKUz9yDx4S8f0nZ6W67Jcw1DGg+hZmh7\nenbNw8KFUKkSfPWVMxJGMzaKuIPO3F3styO/sXLvSgDurnA3/Rr0Y2Grbax6pyu33ZKH9evh7bdh\n9Wq4+24Fu4ibKNxdaO+JvXT4ugMVR1ak4zcdAchx9moSv32Zm6sU4LPP4MUXYfNmeOYZyKHPbyKu\no//WLnL41GEGLR7E8KXDOZtylieqPcFLtXsxerQz8mX/fmjTxpkyIDLS39WKiC8p3F1kytopDFo8\niDY3tCGuXh82LS1L0zqwbh3cdpvTr169ur+rFJGsoHAPYKeTT/Nu/LsUCi9EzI0xPF7tceqUqsO5\nvVV4pjV8/z2UKwdffAH33qs+dZFg4lGfuzGmiTFmozFmizHmxQye72KMWWeMWW2M+cEYow/9PpSc\nksx7P79HhREV6Dy7M7O3zgbg4L6cvPlSFapVc+4ofestWLsW/vMfBbtIsMn0zN0YEwqMAhoDCcBy\nY8xMa+26NM1WAtHW2kRjzDPAIOABXxQc7L7b+h2dvunEpkObqFm8Ju/f+z41C99OXJwzodfZs/Dc\nc/Dyy/Cvf/m7WhHxF0/O3GsAW6y126y1Z4DJQIu0Day186y1iambS4AS3i0zm6hf/887NrOQtZYz\n584Azll7ztCczGg9g/89+hPb591O+fLQp48zTn39ehg6VMEuEuw8CffiwK402wmp+y6mHfDNPylK\n/rRg+wLqdC1I7yfLAdC0XFN+efoX8iY0Jzra0K6dM3Hh4sXw2WdQtqyfCxaRbMGTcM+otzbDFT6M\nMQ8B0cDgizwfa4yJN8bEHzhwwPMqg9D5qQLqT6zPjlynqZjozFi4fr2h+T0hNGoEx47B5Mnw009Q\nq5YPigjGZefmz9e8MuIKnoR7AlAyzXYJYE/6RsaYRkBPoLm1NimjF7LWjrHWRltroyMiIq6k3qAw\nePFgqo+tzoo9Kxh6x1A2L63BXTuvo317uPFGWLQIBg50umAeeMBHF0svtuxcMAS8iAt4MhRyOVDe\nGFMa2A20BtqkbWCMqQa8CzSx1u73epVBYPvR7YSYEEpdVYom5ZqQeDaR5259jrCUAgzbno9Xd8aQ\nuMy5o7R3byhUyMcF9ewJiYl/3ZeY6OzXNLgi2V6mZ+7W2mSgIzAbWA9MsdauNcb0NcY0T202GMgH\nfGaMWWWMmemzil3m9z9+p+OsjlQYUYGec3sCcEORG+hVtzdfTi3AddfBS7/F0qDgStauhREjsiDY\nQcvOiQQ4j25istbOAmal2/dKmsduXqPHJ9JPFdCuWjt61e0FON0uXbvC8uVw000w8V+dqV9wFVSc\nn3UFliqV8YLRWnZOJCBo4jA/GbBwAIMWD6JlpZas77Ce0c1Gk7ivOC1bQt26sHcvfPCBE/D1C67y\nQ4Fadk4kkGn6gSxyfqqAm6+9mdola9O9TncerfooNxS5gcOHoXNnGDUKcuWCfv2gS5e/Z2uW0rJz\nIgFN4e5jySnJTFw1kT4L+rDr+C663NKF2iVrUzhvYa7KUZg33nDC/PhxJ0f79oWiRf1ddSotOycS\nsBTuPjRz40y6zel2YaqACS0m0LBMQ6yFqVOhe3fYtg3uvBOGDIEqVfxdsYi4hcLdy6y1WCwhJoRN\nhzZdmCrgngr3YIxh6VLnYunixU6Yf/utE+4iIt6kC6petHDHQm6bcBuTVjs3+jxb81lWPbWK5hWb\ns3274cHc7JjcAAAK20lEQVQH4ZZbYOtWp7dj1SoFu4j4hsLdU5e4FX/FnhU0+agJ9d6vx29HfyNn\naE4AwkLDOHE8lBdegOuugxkzoFcvZ3m7J56A0FA/HYuIuJ66ZTxxsVvxgRcK/8LgHwdzTZ5rGNJ4\nCO2rtydPWB7OnoUxY5y7SQ8fhrZtoX9/KHG582We/6WSlOT8UtGIFRHxgMLdE5e4Fb/O7OGEh4XT\n5dYuFMhVAGth5kx44QXYuBEaNHCm4K1W7Qre9xK/VBTwInIpxtoMJ3j0uejoaBsfH++X975sISGQ\n0b+TMZCScmHz55/h+edh3jyoWNFZPKNZs38wsVdUVMZ3iUZGwvbtV/iil+n8/PUaCimSLRhjVlhr\nozNrpz53D5wrcZHp61NvxU9IgEcegehoWLMGRo50/rznnn84Y6PmdxGRK6Rw98CwFkU4GZZuZ3g4\np3oNoFcvqFABPv0UunWDLVugQwcIS9/+SlxsHhfN7yIimVC4ZyApOYnhS4ez85hzhnxnr4kceutV\nZ24AwJaKZO6DYyjdM4b+/aFFC9iwwZlj/aqrvFiI5ncRkSukC6ppJKck88EvHxA3P45dx3eRlJxE\nt9rduL7w9dD+epgym28P16CbHcSv7zmrH82YATVr+qggze8iIldI4Z5q6rqp9Jzbk02HNlH92uoX\npgo4b80aeH71IL47UoOyZZ3pA1q29NEqSGn5e34XXUgVCUiBF+4+Gr3xzeZvCAsJY/oD02lesTkm\nNbV//9258Wj8eCgQUomhZUbRYW2H8z00IiLZUuCFu5cs2rGInnN7MvSOoVQvXp23mrxFeFg4oSHO\nbaOJic749IEDnR6RTp2g1/IYrgk7Drk6+Ll6EZFLC7oLqiv2rKDppKbUfb8uWw5vYf9JZ8nX/Lny\nExoSSkoKTJzojIB55RVn7pd16+Ctt3CCXUQkAATVmXu7Ge0Yv2o8V+e5msGNB9O+envCw/4cjTJv\nnjNj48qVUL06fPIJ3HabHwsWEblCrg/3hOMJFM9fHGMMlSMq06tuL7re2pWrcv85ZnHDBme6gC+/\ndIaQT5oErVs7N6aKiAQi18bX73/8TqdZnSgzrAzTNkwDoGutrvRt0PdCsB844NxwVKWKM9nja685\nQd+mjYJdRAKb687cj5w6wuAfBzNs6TCSkpNoV60dNYrX+Eub06dh+HBnyPjJk/DUUxAXBxER/qlZ\nRMTbXBXu1loaftCQVb+vonWV1vSp34fy15RP8zxMngwvveTMx9WsGQwaBJUq+bFoEREf8KjzwRjT\nxBiz0RizxRjzYgbP5zLGfJr6/FJjTJS3C72YpOQk3o1/l9PJpzHGMLjxYFY9vYqPW338l2BfvNhZ\nBalNGyhYEL7/3uljV7CLiBtlGu7GmFBgFNAUqAw8aIypnK5ZO+CItbYc8CYw0NuFppecksyElROo\nMLICT3/9NNPWO/3qDcs05MYiN15ot3Ur3Hcf1KkDu3Y5NyOtWAENG17slUVEAp8n3TI1gC3W2m0A\nxpjJQAtgXZo2LYC41MdTgZHGGGN9MFm8xTI14iC93q7CxkMbqX5tdcbdM45GZRr9pd3hw87KRyNH\nOjM0xsU5c63nzfsP3ly34otIgPAk3IsDu9JsJwDpp8q60MZam2yMOQZcAxz0RpHpvVkygRwhJZn2\nwDRaVGxxYaoAgDNn4O23oW9fOHoUHn8c+vWDYsV8UUkW0S8VEblMnoR7RlNjpT8j96QNxphYIBag\n1BXOSW4wfPHr9UQMWXRhqgBwLpZOmwbduztzqjduDEOGwI03XuLFRERcypMLqglAyTTbJYA9F2tj\njMkBXAUcTv9C1tox1tpoa210xJWMO0xdLLronJ8ILVPW2QaWL4e6daFVK8iZE2bNgtmzFewiErw8\nCfflQHljTGljTE6gNTAzXZuZwCOpj+8D5nq9vz2DxaJTnoxlVK1J1KgBmzbB6NHwyy/QtGkWTMUr\nIpKNZdotk9qH3hGYDYQC4621a40xfYF4a+1M4D3gQ2PMFpwz9tZer7RnT2eqxjRCTiXS7Kee7OkR\nQ/fuUKCA199VRCQgGR8MaPFIdHS0jY+P9/wvhIQ4HevpWGMwKSlerExEJPsyxqyw1kZn1i5wZlC5\nyAVYo8WiRUT+JnDCXYtFi4h4LHDCPSYGxozhwvp2kZHOthaLFhH5m8CaOMzfi0WLiASIwDlzFxER\njyncRURcSOEuIuJCCncRERdSuIuIuJDCXUTEhRTuIiIupHAXEXEhhbuIiAsp3EVEXEjhLiLiQoE1\ntwxoThkREQ/ozF1ExIUU7iIiLqRwFxFxIYW7iIgLKdxFRFxI4S4i4kIKdxERF1K4i4i4kMJdRMSF\njLXWP29szAFgxxX+9ULAQS+WEwh0zMFBxxwc/skxR1prIzJr5Ldw/yeMMfHW2mh/15GVdMzBQccc\nHLLimNUtIyLiQgp3EREXCtRwH+PvAvxAxxwcdMzBwefHHJB97iIicmmBeuYuIiKXkK3D3RjTxBiz\n0RizxRjzYgbP5zLGfJr6/FJjTFTWV+ldHhxzF2PMOmPMamPMD8aYSH/U6U2ZHXOadvcZY6wxJuBH\nVnhyzMaY+1O/12uNMR9ndY3e5sHPdiljzDxjzMrUn++7/FGntxhjxhtj9htjfr3I88YYMzz132O1\nMeYmrxZgrc2WX0AosBUoA+QEfgEqp2vTHhid+rg18Km/686CY24AhKc+fiYYjjm1XX5gIbAEiPZ3\n3VnwfS4PrAT+lbpd2N91Z8ExjwGeSX1cGdju77r/4THXBW4Cfr3I83cB3wAGuAVY6s33z85n7jWA\nLdbabdbaM8BkoEW6Ni2AiamPpwINjTEmC2v0tkyP2Vo7z1qbmLq5BCiRxTV6myffZ4B+wCDgdFYW\n5yOeHPOTwChr7REAa+3+LK7R2zw5ZgsUSH18FbAnC+vzOmvtQuDwJZq0AD6wjiVAQWNMMW+9f3YO\n9+LArjTbCan7MmxjrU0GjgHXZEl1vuHJMafVDuc3fyDL9JiNMdWAktbar7KyMB/y5PtcAahgjFls\njFlijGmSZdX5hifHHAc8ZIxJAGYBnbKmNL+53P/vlyU7L5Cd0Rl4+qE9nrQJJB4fjzHmISAaqOfT\ninzvksdsjAkB3gQezaqCsoAn3+ccOF0z9XE+nS0yxlSx1h71cW2+4skxPwi8b60daoy5Ffgw9ZhT\nfF+eX/g0v7LzmXsCUDLNdgn+/jHtQhtjTA6cj3KX+hiU3XlyzBhjGgE9gebW2qQsqs1XMjvm/EAV\nYL4xZjtO3+TMAL+o6unP9gxr7Vlr7W/ARpywD1SeHHM7YAqAtfYnIDfOHCxu5dH/9yuVncN9OVDe\nGFPaGJMT54LpzHRtZgKPpD6+D5hrU69UBKhMjzm1i+JdnGAP9H5YyOSYrbXHrLWFrLVR1toonOsM\nza218f4p1ys8+dmejnPxHGNMIZxumm1ZWqV3eXLMO4GGAMaYSjjhfiBLq8xaM4G2qaNmbgGOWWv3\neu3V/X1FOZOrzXcBm3CusvdM3dcX5z83ON/8z4AtwDKgjL9rzoJj/h7YB6xK/Zrp75p9fczp2s4n\nwEfLePh9NsAbwDpgDdDa3zVnwTFXBhbjjKRZBdzh75r/4fF+AuwFzuKcpbcDngaeTvM9HpX677HG\n2z/XukNVRMSFsnO3jIiIXCGFu4iICyncRURcSOEuIuJCCncRERdSuIuIuJDCXUTEhRTuIiIu9P/t\nqn35v3zN6wAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"errorbar(x,y,dy,fmt='ro')\n",
"xt=linspace(0,1,101)\n",
"plot(xt,fit(m.values['a'],m.values['b'],xt),'b-')\n",
"plot(xt,fit(1,0,xt),'g--')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Когда фитирующая функция есть линейная комбинация каких-то фиксированных функций с неизвестными коэффициентами, минимизация $\\chi^2$ сводится к решению системы линейных уравнений. Нет надобности использовать Minuit.\n",
"\n",
"## Резонанс без фона\n",
"\n",
"Пусть теперь наша фитирующая функция - Брейт-Вигнеровский резонанс (без фона), с двумя параметрами - положением и шириной (лучше бы ввести третий - высоту, но я не стал этого делать для простоты). Теперь $\\chi^2$ - сложная нелинейная функция параметров."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def fit(x0,Gamma,x):\n",
" return 1/((x-x0)**2+Gamma**2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Вот наши экспериментальные данные (с ошибками 0.1)."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"x=linspace(-3,3,21)\n",
"dy=0.1*ones(21)\n",
"y=fit(0,1,x)+dy*normal(size=21)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Минимизируем $\\chi^2$."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def chi2(x0,Gamma):\n",
" global x,y,dy\n",
" return (((y-fit(x0,Gamma,x))/dy)**2).sum()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib64/python3.6/site-packages/ipykernel_launcher.py:1: InitialParamWarning: errordef is not given. Default to 1.\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
}
],
"source": [
"m=Minuit(chi2,x0=0,error_x0=1,Gamma=1,error_Gamma=1)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" \n",
" \n",
" FCN = 35.747379402362355 | \n",
" TOTAL NCALL = 29 | \n",
" NCALLS = 29 | \n",
"
\n",
" \n",
" EDM = 1.5113944332374378e-07 | \n",
" GOAL EDM = 1e-05 | \n",
" \n",
" UP = 1.0 | \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
" Valid | \n",
" Valid Param | \n",
" Accurate Covar | \n",
" PosDef | \n",
" Made PosDef | \n",
"
\n",
" \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" False | \n",
"
\n",
" \n",
" Hesse Fail | \n",
" HasCov | \n",
" Above EDM | \n",
" | \n",
" Reach calllim | \n",
"
\n",
" \n",
" False | \n",
" True | \n",
" False | \n",
" | \n",
" False | \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" \n",
" \n",
" + | \n",
" Name | \n",
" Value | \n",
" Parab Error | \n",
" Minos Error- | \n",
" Minos Error+ | \n",
" Limit- | \n",
" Limit+ | \n",
" FIXED | \n",
"
\n",
" \n",
" \n",
" 1 | \n",
" x0 | \n",
" -0.00899077 | \n",
" 0.0659539 | \n",
" 0 | \n",
" 0 | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" 2 | \n",
" Gamma | \n",
" 0.991722 | \n",
" 0.0266705 | \n",
" 0 | \n",
" 0 | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"({'fval': 35.747379402362355, 'edm': 1.5113944332374378e-07, 'nfcn': 29, 'up': 1.0, 'is_valid': True, 'has_valid_parameters': True, 'has_accurate_covar': True, 'has_posdef_covar': True, 'has_made_posdef_covar': False, 'hesse_failed': False, 'has_covariance': True, 'is_above_max_edm': False, 'has_reached_call_limit': False},\n",
" [{'number': 0, 'name': 'x0', 'value': -0.008990774854701301, 'error': 0.06595389618462269, 'is_const': False, 'is_fixed': False, 'has_limits': False, 'has_lower_limit': False, 'has_upper_limit': False, 'lower_limit': 0.0, 'upper_limit': 0.0},\n",
" {'number': 1, 'name': 'Gamma', 'value': 0.991722016714531, 'error': 0.026670486505639225, 'is_const': False, 'is_fixed': False, 'has_limits': False, 'has_lower_limit': False, 'has_upper_limit': False, 'lower_limit': 0.0, 'upper_limit': 0.0}])"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.migrad()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Gamma': 0.991722016714531, 'x0': -0.008990774854701301}"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.values"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"35.747379402362355"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.fval"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Gamma': 0.026670486505639225, 'x0': 0.06595389618462269}"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.errors"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((0.004349916421931988, -2.3890408807357486e-05),\n",
" (-2.3890408807357486e-05, 0.000711314850447484))"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m.matrix()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([-0.26708525, -0.26191248, -0.25673971, -0.25156695, -0.24639418,\n",
" -0.24122141, -0.23604865, -0.23087588, -0.22570312, -0.22053035,\n",
" -0.21535758, -0.21018482, -0.20501205, -0.19983928, -0.19466652,\n",
" -0.18949375, -0.18432098, -0.17914822, -0.17397545, -0.16880269,\n",
" -0.16362992, -0.15845715, -0.15328439, -0.14811162, -0.14293885,\n",
" -0.13776609, -0.13259332, -0.12742055, -0.12224779, -0.11707502,\n",
" -0.11190226, -0.10672949, -0.10155672, -0.09638396, -0.09121119,\n",
" -0.08603842, -0.08086566, -0.07569289, -0.07052012, -0.06534736,\n",
" -0.06017459, -0.05500183, -0.04982906, -0.04465629, -0.03948353,\n",
" -0.03431076, -0.02913799, -0.02396523, -0.01879246, -0.01361969,\n",
" -0.00844693, -0.00327416, 0.0018986 , 0.00707137, 0.01224414,\n",
" 0.0174169 , 0.02258967, 0.02776244, 0.0329352 , 0.03810797,\n",
" 0.04328074, 0.0484535 , 0.05362627, 0.05879903, 0.0639718 ,\n",
" 0.06914457, 0.07431733, 0.0794901 , 0.08466287, 0.08983563,\n",
" 0.0950084 , 0.10018117, 0.10535393, 0.1105267 , 0.11569947,\n",
" 0.12087223, 0.126045 , 0.13121776, 0.13639053, 0.1415633 ,\n",
" 0.14673606, 0.15190883, 0.1570816 , 0.16225436, 0.16742713,\n",
" 0.1725999 , 0.17777266, 0.18294543, 0.18811819, 0.19329096,\n",
" 0.19846373, 0.20363649, 0.20880926, 0.21398203, 0.21915479,\n",
" 0.22432756, 0.22950033, 0.23467309, 0.23984586, 0.24501862]),\n",
" array([ 0.89815947, 0.90027003, 0.90238059, 0.90449115, 0.90660171,\n",
" 0.90871226, 0.91082282, 0.91293338, 0.91504394, 0.9171545 ,\n",
" 0.91926506, 0.92137561, 0.92348617, 0.92559673, 0.92770729,\n",
" 0.92981785, 0.93192841, 0.93403896, 0.93614952, 0.93826008,\n",
" 0.94037064, 0.9424812 , 0.94459176, 0.94670231, 0.94881287,\n",
" 0.95092343, 0.95303399, 0.95514455, 0.95725511, 0.95936566,\n",
" 0.96147622, 0.96358678, 0.96569734, 0.9678079 , 0.96991846,\n",
" 0.97202901, 0.97413957, 0.97625013, 0.97836069, 0.98047125,\n",
" 0.98258181, 0.98469236, 0.98680292, 0.98891348, 0.99102404,\n",
" 0.9931346 , 0.99524516, 0.99735572, 0.99946627, 1.00157683,\n",
" 1.00368739, 1.00579795, 1.00790851, 1.01001907, 1.01212962,\n",
" 1.01424018, 1.01635074, 1.0184613 , 1.02057186, 1.02268242,\n",
" 1.02479297, 1.02690353, 1.02901409, 1.03112465, 1.03323521,\n",
" 1.03534577, 1.03745632, 1.03956688, 1.04167744, 1.043788 ,\n",
" 1.04589856, 1.04800912, 1.05011967, 1.05223023, 1.05434079,\n",
" 1.05645135, 1.05856191, 1.06067247, 1.06278302, 1.06489358,\n",
" 1.06700414, 1.0691147 , 1.07122526, 1.07333582, 1.07544637,\n",
" 1.07755693, 1.07966749, 1.08177805, 1.08388861, 1.08599917,\n",
" 1.08810972, 1.09022028, 1.09233084, 1.0944414 , 1.09655196,\n",
" 1.09866252, 1.10077307, 1.10288363, 1.10499419, 1.10710475]),\n",
" masked_array(data =\n",
" [[-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" ..., \n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]\n",
" [-- -- -- ..., -- -- --]],\n",
" mask =\n",
" [[ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" ..., \n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]\n",
" [ True True True ..., True True True]],\n",
" fill_value = 1e+20),\n",
" )"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEKCAYAAAA4t9PUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81PX9wPHX+5JcFgmZDCGEKUM2yB7KVFHEvavWSqm1\n1lqtW6zaVq27Wv3ZOqsVq3VQUZmRvZElQ2bYEBISMm/k3r8/vheMGCCQhO99L5/n43GP5L7f713e\ngcu977PeH1FVDMMwDONUuewOwDAMw3A2k0gMwzCMGjGJxDAMw6gRk0gMwzCMGjGJxDAMw6gRk0gM\nwzCMGjGJxDAMw6gRk0gMwzCMGjGJxDAMw6iRSLsDOB3S0tK0ZcuWdodhGIbhKMuXLz+oquknuq5e\nJJKWLVuybNkyu8MwDMNwFBHJrs51pmvLMAzDqBGTSAzDMIwaqbNEIiJvisgBEVl7jPMdRGShiHhE\n5O6jzp0nIhtFZLOI3FfpeCsRWSwim0TkQxFx11X8hmEYRvXUZYvkbeC845zPA+4Anql8UEQigFeA\n84FOwDUi0il4+ingeVVtBxwCbqnlmA3DMIyTVGeJRFXnYCWLY50/oKpLAd9Rp/oAm1V1q6p6gUnA\nxSIiwDDg4+B17wDjaj9ywzAM42SE4hhJM2Bnpfu7gsdSgXxV9R913DAMw7BRKCYSqeKYHud41U8i\nMl5ElonIspycnFoLzjAMw/ixUEwku4CMSvebA3uAg0CSiEQedbxKqvq6qvZW1d7p6SdcT2MYhmGc\nolBMJEuBdsEZWm7gamCyWpvLZwGXB6+7EfjcphgNwzCMoDpb2S4iHwDnAGkisguYCEQBqOprItIE\nWAYkAgERuRPopKqHReR2YCoQAbypqt8Fn/ZeYJKIPAF8C7xRV/EbhmEY1VNniURVrznB+X1Y3VNV\nnfsS+LKK41uxZnUZhmEYISIUu7YMwzAMBzGJxDAMw6gRk0gMwzCMGjGJxDAMw6gRk0gMwzCMGjGJ\nxDAMw6gRk0gMwzCMGjGJxDAMw6gRk0gMwzCMGjGJxDAMw6gRk0gMwzCMGjGJxDAMw6gRk0gMwzCM\nGjGJxDAMw6iROisjbxj1kaoXArkQyIHygxA4CIFcNJAbPJ4LgTwI5AORINEgbpBEiEgHVzriSj/y\nPRXfSzIiVe02bRj2M4nEMKpB1WMlhfKDEDgAgRy0/ID1ffn+4NcDoIeqfgKJB1cquNIgogVEdQUC\noB7QMggUgG+d9bxaXMUTRKGuNIhIA1ejYJJJQyJ++J6IRuBKxdpY1DBOH5NIjHpLVa03/vKcYCLI\ngcBBNFDRkjh45BhaUMUzuKw3cFcjiGgGUT2Ryi0JV2qwZZGCSEz14woUWy2aQE7w5+egR+LLhfJd\n4PsWAnloVY+XhsHEkhaMLx1xpQZbNxVfm4AkIWJ6t42aq8utdt8ELgQOqGrnKs4L8CJwAVAC3KSq\nK0TkXOD5Spd2AK5W1c9E5G1gKFDxV32Tqq6sq9/BCA+qXuvTvu9b1LcayvdYrYfAAcD30wdUbj1E\ntoWI/kjwDdl6g04PtgpSEYmo9XjFFQ+ueKDlD8eq/L18wa6yH5LgkURY0a3mW2sdO2YrJx0iGgeT\nYWMkshO4e0NEhulKM6qtLlskbwMvA+8e4/z5QLvgrS/wKtBXVbOA7gAikgJsBqZVetw9qvpxHcVs\nhAFVBf9m8M5BPXPBuwzwWiddZ0BkZvDNshHiahTsEqpIDmmIK87W+KtLJMpqWUQ0gahKx6u4VgMl\nwUQTTDjl+4OtnGC3nH8TeOehGvxzdTVC3X2R6KEQPQhxpZyW38lwprrcs32OiLQ8ziUXA++qqgKL\nRCRJRJqq6t5K11wOfKWqJXUVpxEeVAPgW4mWTQXPdKv7ByDyTIi7DnH3hKjuSERjewO1ibjiwNUC\naPHDsaOuUQ2Afwv4lqLepeCdj5b9DxA0qhsSPRJiRiORLTCMyuwcI2kG7Kx0f1fwWOVEcjXw3FGP\n+5OIPALMBO5TVU+dRmmELA0UgXcB6pkNntnBrqooiB6IxE+A6CFIRBO7w3QMERdEtYOodkjctcHE\nshY8s9GyLLTor1D0VzTyLCRmJESfA5EdTReYYWsiqbIFfuSkSFOgCzC10vn7gX2AG3gduBd4rMon\nFxkPjAdo0cJ8ggoHVpfVJvDOtZKHdzngA2kA7oHBN7dzEVeC3aGGBSuxdIWorkiD36D+XeCZipZ9\njRa9AEUvgKsxGn2O1QXm7m+N7xj1jp2JZBeQUel+c2BPpftXAp+q6pHR0ErdXh4ReQu4+1hPrqqv\nYyUbevfuXdXkFsMBVMvBtwItmwZl0yEQfIlEtof4GxH3UHD3tMYLjDolkc0h8hYk/ha0/CB45qCe\nLCj7Ai39EIhC3Wcj0cMhZlS97Uasj+xMJJOB20VkEtZge8FR4yPXYLVAjqgYQwnO+BoHrD1t0Rqn\njaofvEuC4x3TrJlJuK1B3+jbTJdVCJCINIi7FIm71JoV512OeuaAJwstfBwKH0ejeiIxoyHmPCSi\nqd0hG3VIrLHuOnhikQ+Ac4A0YD8wkeDcElV9LZgMXgbOw5r+e7OqLgs+tiUwH8hQ1UCl55wFpGN1\ni60EJqhq0Yli6d27ty5btqy2fjWjDqj6gsnjK6vloYdAYiH6HCR6tJU8XA3sDtOoBvVvhrJpaNnX\n4N9gHYzqgcScZ5KKw4jIclXtfcLr6iqRhBKTSEKT9Ul2QbDbagZovrWGI/oc600neggisXaHadSA\n+rdD2VfBpLLeOmiSimOYRFKJSSShQwMl1mB52XTwzAItCiaP4cHkMRiRaLvDNOqA+rdB2ddWq/NI\nS6W71f0VPdoagzFCikkklZhEYi8NFIFnVnDMYy5QBpIEMcOtNxH3AFMfqp6xkspU6zXh/846GNkZ\niRllDdRHtrY3QAMwieRHTCI5/VQVvIvQ0klQlgWUgasxxIy0Fra5z0bElHozQP07wDPNSiq+VdbB\nyHZIzBiIHYdEnGFvgPWYSSSVmERyeql/J3r4j+CdY7U8YscgMRdafeOmSKBxHFq+F8qmW2MqvmWA\nQPQoJPF+k1BsUN1EYj4SGrVG1QvFb6FFr4BEIAn3Q9y1ZszDqDaJaArxP0Pif2Z9ICn92HpNHZwD\n8bdD/E1mzVAIMh8PjVqhvtVo7mVo0bPWgHnaV0j8zSaJGKdMIjNwJfwOSfsS3APQor+iuZeivjV2\nh2YcxSQSo0ZUywgUPo3mXgmBQ0jSq7iSXzELBo1aI5HNcSW/iiS9AoFDaO4VBAr/Sn3olncK07Vl\nnDL1LkELHoTybIi9Ekn4A+JKtDssI0xJzEhw90ULn7Y+tFSjWKSWfgHlO5AGt52GCOsvk0iMk6aB\nQrTwr1A6ydoAKfkdJLq/3WEZ9YC4EpGGT1Cp4MXxRXVFy6ageTcgDZ9EIprVbYD1lOnaMk6KlmWh\nB8dA6X8g7udI2hcmiRinXXVn/0lkC1zJr0JUbyj9rI6jqr9MIjGqRcv3ETh0O5r/S3AlICkf4kq8\nz5QwMUKW+tYROPxn645/AxVvd2ZspfaZri3juFQDUPI+WvQcqB9pcBfE/9ysRDdCkqr+MHYS0QJ8\nawnkXg2RrSFmJAAi8uPrjBozLRLjmNS/Gc27xioLHtUDSZuCNJhgkogRugL7rW0IAHE1QBo+CRGN\nkcRHkci2lS70oOV70OL30PLd9sQaRkwiMX5C1YcW/R09eDH4tyENn0aS3zB7dRshTVXBMxM9dCsa\nyLMOehdARAtE3EcSDIAWvYwWvYT6VqK511mFJI1TZrq2jB9R3/dowb1WIb2Y85GER5CIVLvDMowT\nEhGIuw4CxWje9WhkJwjkI7FjguMiEQBo0evg34I0uAuJaoeWfgrle47/5MZxmURiAMFdCYvfQIte\nsgbTk/5mVeY1DIeRBuMhZgT4N0NUTxD3kfEQ9W1Eyz5HGv4ViWpnPSCQh/q3UjFiooFDiCvZnuAd\nyiQSA/VvQQvusyqvRp+HNHwUcaXYHZZhnDKJbA2RrdHyfWjx2xB3PRLRBC39LxIzDonqBIAG8tHi\nt5Dk11Eth+I3Ud+3qHqRhn9GIhrZ+4s4RJ2NkYjImyJyQESq3FddLC+JyGYRWS0iPSudKxeRlcHb\n5ErHW4nIYhHZJCIfihn1rRHVcrT4TfTgOPBnIw2fQ5JeNEnECBsS0QSJ/7m1bTOAREFk5pHzWvAw\nxF4BrhS08CnUvxlJuNdayFj8dzNVuJrqcrD9baz92I/lfKBd8DYeeLXSuVJV7R68ja10/CngeVVt\nBxwCbqndkOsP9Wdb/ciFT0L0QGtGVuyFZkqkEXbElYK4Glp3yg9A+S4AtPgNKN+OxN+ClrxvrZqP\n/wUSmWl16/o2AB77AneQOkskqjoHyDvOJRcD76plEZAkIsfcwFmsd7hhwMfBQ+8A42or3vpCNYAW\nv4sevAj831tlI5JeRSLS7Q7NMOqcxN+Mln5OIO8W1LcBSXreqhWnReDue2TcREsnBXfujEHLd6Oe\nudYeKUaV7BwjaQbsrHR/V/DYXiBGRJYBfuBJVf0MSAXy9Yc5fBXXG9VkbTj1AHgXg3sI0vAJU6XX\nqFckqhOS9jnqz4aIpta04NL/AZEQGUwiZdNBy5GY/sFZjL8Hdz/wzke9S5GEBxCJsPcXCTF2JpKq\n+lAqOiRbqOoeEWkNzBKRNcDh41z/0ycXGY/VZUaLFvV7/YO1Ov3faNEzgCCJf4LYy003Vh3z+P0c\nLC3hYEkJB4uLySkp5kDwa15pKeWBAAFVAqrEu92kx8WTHh9Ho7gGpMXHkR4XT6P4eJJiYnGZ/6ta\nJZXHSfybEFcjxJWE+rejZVOR6AGgXrTsU4gegSvht6gqeuhmCByCiDQbow89diaSXUBGpfvNgT0A\nqlrxdauIfAP0AP6L1f0VGWyVHLm+Kqr6OvA6WFvt1sUv4ATq34EWPAC+JeAeHGyFHLMH0TiB8kCA\nvLLSYGIoIaekmJxgcjhYUsLBI/dLKPCUVfkcyTExpMTGERURgQtr/UPRIS8Hioso9ft/cn2Uy0Va\nXBxpcfFHkkt6fPyP7jeKt76PjjQTMU+WRJ1lVbN2JaIlH1jl6iO7gHcR4LemEwN4skASEJNEfsLO\nV91k4HYRmQT0BQpUda+IJAMlquoRkTRgIPC0qqqIZAGXA5OAG4HP7Qo+1FmtkPesHQuJQBKfgNgr\nTCukmnJLSlh9YB/rcnJYn3OAbfmHjrQkAlXM5ImPiiItLp60uDjapqTSr3kG6fHxNIqLJy34Jl+R\nDNwRx+4WKfJaCeVgSQk5xcUcqJSocoqL2VdUyOoD+8gtKamyOZ4YHU16XDyNGzQgs2ESLZOSaNkw\nmbObNSMpxhTYrIrEjAaJQ73fIvE3IrGXoOU5qHcBEn8LIrHWSvny3RDZFtUyRGLsDjuk1FkiEZEP\ngHOANBHZBUwEogBU9TXgS+ACYDNQAtwcfGhH4P9EJIA1GeBJVV0XPHcvMElEngC+Bd6oq/idTMsP\noPl3mVbISQiosvbAfrK2byVr+zZW79935FyLxIa0TUmlW+MmpMfHkxobR3owOVQkiHh37cxEb+B2\n08CdQuvk40/B9gcC5JWWHGn9HCguslpIxUUcKC5mb1EhX2/+nkNlVqsoQoReTZsxrFVrhrVqTZvk\nFPOhohKJHoxED/7hQNmX1nF3b2uxrncl6v8eiRlhkkgVpD7Mk+7du7cuW7bM7jBOC/XvQPOuBz2M\nJDwMsZeaN4xjKPZ6mbsjO5g8tnKwpAQBujdpyrktW9OnWXM6pKWTGO3cfecLysrYlJfLnOztzNy2\nhfUHcwArOQ5r1ZpzW7Wmb7OM47aS6iP1LEBLP8SV9CJaMgn1b0ciGllrUuoREVmuqr1PeJ1JJOFD\ny/ejeddAoAhJefvI6l3jBwdLSpi5dTPTtm5h/s5svOXlJLijGZrZknNbtmZIZktS4+LsDrPO7Ck8\nTNb2bczatpUFO3fgKfeT4I5mWKvWjGzdhiGZrWhQS60rJ1NVtOBOKN8HEo3E/wqiuiCuBnaHdlqZ\nRFJJfUgkql6rJeLfhKS8i0R1sTukkLGjIJ9pWzYzbetmlu/ZjQLNExMZ1bodI1q3oVfTM4iqh5/I\nS30+5u/MZtrWzczcuoVDZWW4IyIYlJHJ6LbtGNGqDcmx9XtcRf27rNpzFQsa65nqJhIzxSNMaOFf\nwLcSSXqp3icRVWX9wRymbtnE9K1b2BDszumYls5v+vRndJu2dEhLr/ddfrFRUYxo3ZYRrdviDwRY\nvmc3U7duZtqWTczavpUIEfo0y2B0m7aMbN2WpgkJdod82klkc7tDcATTIgkDWjoZLbgb4m7GlXi/\n3eHYwldezpI9u5i5dQsztm1h1+HDCND7jGaMatOOUa3bktGwfn6qPFmqytqcA0zbsolpWzazKS8X\ngK6NmzCydVtGtW5L2xQzWF8fmK6tSsI5kahvI5p7BUR1RlLeQSTK7pBOq+z8fP61eiUfr1/LYY+H\nmMhIBmVkMrx1G4a3akNaGI93nC5b8nKZumUzM7ZuYeX+vQC0Tk5mTLv2jGnXnjNT69+6Cg0UQdmX\nSNyVdodSp0wiqSRcE4kGCtHcS0FLkdRP61W9rD2Fh3l+0QI+3bAOlwjntWnH2PYdGJiRSWxU/Uqm\np9P+oiKmb93MV5u/Z/HuXQRU6dX0DP54znA6pdefkuta9A+06K9Iw6eQ2EvsDqfOmERSSTgmEtUA\nmv9r8My2BtfdJ/y/DgvlgQDvrl7Jswvn4Q8EuKFrd37RozeNG9Sv2TShIKe4mP99v4FXly0hv6yU\nX/TszW/79icmMvwTuaofPfRz8K5EUj9CotrbHVKdMImkkrBMJEWvo0XPWAXk4m+yO5zTYl3OAR6Y\nNZ3V+/cxNLMVj587nOaJZtzDbvllpfxl3hw+WreWzIZJ/GnYSAZkhH99Oy0/iOaOA4lDUv+LuMJv\nMkJ1E0ld7kdi1BH1LESLnoOYCyDuRrvDqXOlPh9Pzp/DxZPeY/fhw7x43hjeHHuJSSIhIikmlqdG\njOa9S64A4PpPP+IPM74mv6zU5sjqlkSkIUkvQPlOtOD+er0JlmmROIyW77M+BblSkJSPEFe83SHV\nqXk7snlo1nR2HC7gqrO6cO/AwaZmVAgr8/v425JF/GPFMhpGx/DI0HO5sF37sJ7hpcVvooVPIgn3\nIvHhtdee6dqqJFwSyY8WHaZ+jES2sTukOlNQVsYTc7/hv+u/o2VSMn8eNpJ+zTNO/EAjJKw/mMP9\nM6exev8+RrRqw+PnjgjbcSxVRfPvAM+M4Hjl2XaHVGtMIqkkXBJJ4PAfoeR9a9FhzPF2MXa26Vs2\n81DWDPJKSxjf62zu6NPflEd3IH8gwFsrl/PcwgW4IyJ4cPBQrujUOSxbJxooCs6gLA7OoAyPGWxm\njCTMaOlkKHkf4n4etkkkt6SEO77+gl9O+ZzUuDg+veo67hkw2CQRh4p0ubi159l8ed3P6JiWzn0z\np3Hz55+wu7CqPeqcTVwNkKS/QaAQzb+LHzZyrR9Mi8QB1Pc9mncFRJ4VlosOVZUpmzby6DezKPR6\n+PXZ/ZjQu4+pSBtGAqq8v2YVT82fgwvhvkFDuKZz17BrnWjpZ2jBHyD+VlwJ99gdTo2ZWlthQgOF\naP7tIA2QpBfCLokcKC7ikayZTNu6ma6Nm/DUiNG0r4crpcOdS4QbunbnnMxW3DdzGg9lzeDLzd/z\n5PBRYTX7TmLHod7lUPwPNKonEjPc7pBOC9MiCWHWIN7t4JkVdoN4qsonG9bx+JwsPP5y7uzXn1t6\n9CbSZXpbw52q8sHa1Tw5bw4BlHsHDuG6Lt3CZl96VQ+aezWU70RSP0EinbumxoyRhIOSN8AzHUn4\nQ1glkd2Fh/n55E+4Z/rXnJmaxpRrb+CXvfqYJFJPiAjXdunGV9ffSK+mZzDxm5lc/8lHZOfn2x1a\nrRCJRpJeAkDz70DVY3NEda/O/nJF5E0ROSAia49xXkTkJRHZLCKrRaRn8Hh3EVkoIt8Fj19V6TFv\ni8g2EVkZvHWvq/jtpt4VaOGzED0a4m6yO5xaUR4I8O6qbznvvbdZumc3E4eey6TLrjrhtrJGeGqW\nkMjbF1/GX4aP4rucA5z/73f454pllAcCdodWYxKZgTR8Gvzr0MNP2B1Onauzri0RGQIUAe+qaucq\nzl8A/AZr3/a+wIuq2ldEzgRUVTeJyBnAcqCjquaLyNvAF6r68cnE4rSuLVUvmjMKJAJJ/SwsSi9s\nyz/EH6Z/zfK9exjSoiVPDBsRVn3jRs3sKyrk4awZzNy2le6Nm/LXkaNpk5Jqd1g1Fih8BopfRxo+\ng8SOtTuck2Z715aqzgHyjnPJxVhJRlV1EZAkIk1V9XtV3RR8jj3AAaD+lLUF8MyFwB4k4cGwSCLz\ndmRz8aT32JSXyzMjz+Otiy81ScT4kSYNEnj9wnG8MPoCthcc4qJJ7/Huqm8dX3ZEGtwJUT3Rw39E\ny/fYHU6dsbNTuhmws9L9XcFjR4hIH8ANbKl0+E/BLq/nRSS67sM8/bT0M3ClQvRgu0OpsS83fc/P\nJ3/CGQmJTLn2Z1za8aywm/Jp1A4RYWz7jnx93Y30bdacR2fP4hf/+4xSn8/u0E6ZSKTVxUUALXjQ\n7nDqjJ2JpKp3kyMfP0SkKfAv4GZVreg0vR/oAJwNpAD3HvPJRcaLyDIRWZaTk1N7UdcxVR9450H0\nKMdP9V2fc4C7p39Ft8ZN+M/lV9MsIdHukAwHaBTfgDfHXsojQ87lm+1b+d3ULwk4uGUikS2Q+F+C\nd37YtkrsTCS7gMrFk5oDewBEJBGYAjwU7PYCQFX3BrvCPMBbQJ9jPbmqvq6qvVW1d3q6g3rGfKus\nMgvRA+yOpEYOe8r41ZTJNIyO4e8XjCUxOiwbj0YdERFu6t6TBwafw7Stm3l12RK7Q6qZmBHWV88c\ne+OoI3YmksnAz4Kzt/oBBaq6V0TcwKdY4ycfVX5AsJWCWH0j44AqZ4Q5mXoWAALuvnaHcsoCqtw1\n9Sv2FhXy8gUXkh4f3hWKjbrz8+49ufDM9jy/aD5zd2y3O5xTF9EGXE2Cf9/hpy6n/34ALATai8gu\nEblFRCaIyITgJV8CW4HNwD+A24LHrwSGADdVMc33fRFZA6wB0oDwm1fnXWDtv+5KsjuSU/bykkXM\n2r6Vh4acS6+mzU78AMM4BhHhL8NG0TY5hTu/nsLuw86s0yUiED0AvItQLbc7nFpnVraHEA0UoQf6\nQPwtuBJ+b3c4p+Sb7du4ZfInjOvQiWdGnmcG1o1asS3/EBdPeo9WScn85/KrHVnIU0snowV3W9WB\no86yO5xqMbW2nMi7FPAj7oF2R3JKdhTkc+fUKXRIS+eJc0fU6yTiKfWwb3sOuXsOcWhfPnn78jm0\n7xCHDhSQty+f/AMFlBWVUVbixVPiITrWTXKTJFKaJJHSJLnS90mkNP3hfmyDmHr579oqKZlnR57P\nL6d8zh9nz+LPw0fZHdLJc/ezvnoWgEMSSXVVO5GISGegExBTcUxV362LoOor9S4AosHdw+5QTlqp\nz8dtUyYD8OqYscRGOXvG2ckIBAJsWr6Vhf9bxqpvvmPPlv3k7T30k+vcMVGkNEkiuUkSjTPTiUuI\nJTrWjTvWjafEy6H9VsLZtmYHh/YXUO7/aRdIUqOGdB7Ugc4DO9B5cEfa9WyFq56UlhnZpi2/6t2H\nV5ctoVuTplx1Vhe7QzopEtEIjWyLehcg3Gp3OLWqWolERCYC52Alki+B84F5gEkktcm7ANxn47Tl\nMarKw1kzWH8wh3+OvYQWDZ07vlNdZSUeVsxYzaL/LWfxlOXk7cvH5RLa92nL2aO707R1Y5q0akRa\n85QjLYu4xLhqtyYCgQCFeUXk7T1E3r588vZaSSZ73U7WzF3PvE8WA5DcuCH9LuxN/7G96TmiC9Gx\nznrtnKy7+g1k9f59TPxmJp3SG9GlUWO7Qzo57gFQ8h9UvVjzisJDtcZIggPc3YBvVbWbiDQG/qmq\nF9V1gLXBCWMkWn4AzRlkFWiM/4Xd4ZyUf61eycRvZvLbvv35bV9nT1s+noN78lj8xXIWfbGcFTNW\n4y3zEZcYy9nndaffhb3pc34PElNPTyWCg7tzWZn1HYunLGfJV99ScriU6Fg3vUZ1o/9Fvel3US+S\n0sOzekBeaQljJ72HIEy++nqSY2PtDqnatGwWmj8BSX4Xie5ndzgnVNtjJKWqGhARf3CNxwGgdY0i\nNH7Mu9D66u5vbxwnacXePTwxJ4tzW7bmN32cFXt1eD0+pr6VxVdvzGTT8q0ANGnViAt+MYL+Y3vT\nZUhHotynvxsvrVkqI64fwojrh+Dz+lg9ex0LPl/Kwv8tY8HnS3FFuOg5ogvDrhnMgHFnE58Yd9pj\nrCspsXG8csFYrvpoEndOncKbYy8lwinde+4+QATqXeiIRFJd1W2R/B14ALga+D1WMcaVqnpz3YZX\nO5zQIgnk/wE83yCNFiHijD+KgrIyznv/HaIjIvj86utpGBNz4gc5hKoy4705vPXgB+TsyqVdr9YM\nuawf/S7qTWan5iE74K2qbFm5nTkfLyTrg3ns256DOyaKy353Idc/fDnumPDpTpm0djUPzJrOb/r0\n43f9nDNBJZB7NVCOK/WjE15rt1ptkahqxRqP10TkayBRVVfXJEDjB6pqtUii+zsmiQC8uXI5+4uL\n+Oyq68IqiezatJcXJ/wfK7O+o0Ofttz95m30GN4lZJNHZSJC2x6taNujFTc/cQ3rF33P5698zQd/\n+ZS5/13E716fQNchnewOs1ZcdVYXlu/dw8tLFjEwI5M+zZrbHVL1uPtD8atooDAsirLCSSxIFJGu\nIjIW6Am0FZFL6y6seqZ8KwT2I27njC8c9pTx9spvGdWmLV0bN7E7nFrh9/n54C+fMr7r79m0Yht3\nvjaeFxf8iZ4jnLm3uIjQqX977n/vtzw59SH8vnJ+f85EXpjwOsUFxXaHV2MiwsShw2jRMIm7pn3J\nYY8zNpCyyh8FwLvohNc6RbUSiYi8CbwJXAZcFLxdWIdx1S+e+dZXB42PzNy6lUKvhwm9jlnuzFE2\nLt3Mr8/veBn9AAAgAElEQVS+jzcf/Df9LuzJG+teYMz4kWEztbbXyG68vvpZLvvdhXz1zxn8ovNd\nLJi81O6waqyB283TI0ezp7CQrzZ/b3c41RPVDSQWrRgXDQPVHWzvp6rh0R4OQepdCBEZjtrbee6O\n7aTGxjq+NVJaVMo7j3zIpy99SXKTJB795B4GjguP5Hi02PgYJjx7I+dePZDnbn2NieOeZsgV/fn1\nizeT0iTZ7vBOWe+mzWjaIIGs7VsdsbZExI1G9bYWJoaJ6n7cWigiJpHUAVU/eBdb88sdIqDKvJ3Z\nDMjIxOXALp8Ky6ev4tYuv+e/L0xhzPiRvPHd82GbRCprf3ZbXln6JDc9fjULP1/KL876HV+/leXY\nTaREhHNatmLBjh34HbJNr0QPgPKtaPk+u0OpFdVNJO9gJZONwU2l1oiIGWyvDb41oEWOKhu/8WAO\nB0tKGJLZ0u5QTklZiYeXf/MG941+Anesm+fnPMYdf7+V+Ib1p0pxZFQk1z14Gf+36hladm7Bs7f8\nnXtHPc6+7QfsDu2UDMzIpMjnZdX+vXaHUj0V3dhhMk5S3UTyJnADcB4/jI84YjFiyPMuxGll4+ft\nzAZgYIZzuuIqlJeX8+ilf+XzV77msjvH8NqKp+k8qKPdYdkmo30znsl6lDv+fisbl2zm9j73kb1u\n54kfGGL6N89AsLZ1doTIDiDJYVNWvrqJZIeqTlbVbaqaXXGr08jqCfUsgMhOiCvF7lCqbW52Nmem\npNKkgfOmLn7w509ZPm0Vv311PBOeuyms1lWcKpfLxUUTRvHKsqeIiIzg3lGPs3frfrvDOinJsbF0\nbtSY+Tt32B1KtYi4ILofeBc6tkuxsuomkg0i8m8RuUZELq241Wlk9YAGSsD3LUQ7Z7ZWmd/H0j27\nGdgi0+5QTtrKrLX864//Ydi1gxgzfoTd4YSc5u2a8uS0h/GW+bjvvCcoLS6zO6STMjAjk5X79lLk\n9dodSrWIuz8E9kP5FrtDqbHqJpJYwAOMwkz/rT2+ZYDPUWXjl+7Zjafcz+AWLe0O5aTsz87hiaue\nI6NDM3776nhHrgs5HVp1bsHE/97Nns37eO+Pob/yurJBLTLxBwIs3u2QrrmKCTYe54+TVHdluyNK\noTiN1T/qBncvu0Optnk7solyuZyzihhrb5BHL/0rfl85j376B+ISnFPkzw7dhp7FBb8YzsfP/Y/e\n53Wnx7DQn1IL0KvpGURHRDJ/RzbDW7WxO5wTi8iAiOZW3a346+2OpkaquyCxlYg8JyKfiMjkils1\nHvemiBwQkSr3Vg/u1/6SiGwOzgbrWencjSKyKXi7sdLxXsFZY5uDj3XuR0vvAnD3RMQ55UXm7cim\nV9NmxDlkvxFV5YUJr7Nl5Xbuf+8OmrdrandIjjDhuRtp3v4MnrjqecfM5IqOjOTsM5o5aJxErM2u\nvIsdv/1udbu2PgO2A38Dnq10O5G3sWZ6Hcv5QLvgbTzwKoCIpAATgb5AH2CiiFSsmHo1eG3F4473\n/CFLA3ng3+Cosig5JcWsP5jDIAeNj0x9K4sZ/5rDDROvoO8Y57T87BbbIJY/fnYvgfIAE8c9jafU\nGeVHBrXIZFNeLvuKCu0OpVrEPQD0MPi/szuUGqluIilT1ZdUNUtVZ1fcTvQgVZ0D5B3nkouBd9Wy\nCEgSkabAaGC6quap6iFgOnBe8Fyiqi5Ua6rDu8C4av4OocXjvLLx83dYn/SckkgCgQD//vMndOzX\njuseuszucBynebum3PfeHWxdnc0Xr023O5xqqXhtLnBIq+TI37/H2eVSqptIXhSRiSLSX0R6Vtxq\n4ec3AyqPjO0KHjve8V1VHHcc9S4ESXDU3s3zd2aTHBNDZ4fsSrcy6zv2bt3PuNvPD5uaWadb3wt6\n0mN4Fz58+jPKSkK/VdIhLZ3U2FjndG9FpEJk++A2285V3b+uLsCtwJP80K31TC38/KrGN/QUjv/0\niUXGi8gyEVmWk5NTgxDriH8bRGQiUt1yZ/ZSVebtyGZARgvHlEXJ+mAe8Q3jGHSpcxZ7hqJrH7iU\nQ/sLWDg5tPf0AXCJ0D+jBfN2ZDtnfYa7P3iXo+qs6daVVTeRXAK0VtWhqnpu8DasFn7+LiCj0v3m\nwJ4THG9exfGfUNXXVbW3qvZOT0+vhVBrWVQX8G90zItnU14u+4uLGJThjG4tVWX59FX0GN7FLDqs\noS5DOtIgKZ4V01fZHUq1DMzIJKekmO/zcu0OpVrE3R/wgvdbu0M5ZdVNJKuApDr4+ZOBnwVnb/UD\nClR1LzAVGCUiycFB9lHA1OC5QhHpF5yt9TPg8zqIq86Juy/gA+8Ku0Oploo+50EOWT+ye9Necnbm\n0nNEV7tDcbyIiAh6jOjC8umrHfEpv2KcxDHlUqKCr1EHD7hXN5E0xlrdPvUkp/9+ACwE2ovILhG5\nRUQmiMiE4CVfAluBzcA/gNsAVDUPeBxYGrw9FjwG8Cvgn8HHbAG+qubvEFrcfYAo1Dvf7kiqZeme\n3TRLSKRZYqLdoVTL8ulWTdFeI00iqQ29RnQlZ1cuOzdW2QEQUpolJNIyKdk5A+7+TdbXCAesfTmG\n6nbQTzyVJ1fVa05wXoFfH+NcxWZaRx9fBnQ+lXhCibjiUXdP8MyFhHvsDueEVu7bS8+mzlmDsWLG\napq0TKdpa2dMDAh1PYMJefm0VbToEPrzWwZmtODTDesIqIb+mJ5vKVbhVudOT69Wi6TylN+Tmf5r\nHJ+4B4F/A1oegpMBjtK0QQN2HT5sdxjVUu4vZ2XWWsdukRuKmrZqzBltm7BihjN2j2iVlEyJz0eh\nA7bfVc9CiDwLcTmjtV+V6q5s7yciS0WkSES8IlIuIs54Vwll0YOsr9559sZRDQNbZLLmwH7yy0rt\nDuWENi7bQsnhUnqO7GZ3KGGl14iurPrmO/w+v92hnFDDGKtaRH5ZaE9m0UAx+FaCg/Yjqkp1x0he\nBq4BNmEVcPxF8JhRE5EdwZWKekJ/nGRwi5YEVB3R7xzwW+UmYuLMbK3a1Lz9GZQWlVFSGPofJnYU\n5OMSITk2xMsP+ZYC/uDMLeeq9iotVd0MRKhquaq+BZxTZ1HVEyIucA8E7zxUQ3uL0O5NmpLgjmZO\n9na7QzmhVl2tWTubv91ubyBhxkndhPN3ZNO1URMSo0M7kViFW6PB3dvuUGqkuomkRETcwCoReVpE\nfgfUn31J65BED4JAHvjX2x3KcUW6XAzMaMHcHdtDfgpofGIcmZ2as3Z+aP+bOs3+7ByioqOIiQ/t\nN+fDHg+r9u9jYAsH7ODpXQDuXohE2x1JjVQ3kdwQvPbXQDHWQkBTvKg2VOxF4gn9cZIhmS3ZW1TE\n5rzjlU8LDT1HdGX17HV4y5yxyZETrJixms6DOuCODu3Kz4t37aRclYEhvnhWy3PA/72jCrcey3ET\niYhcLCK/Dm6tW4ZVPPEmrJXu3U9DfGFPItIhsgPqgAH3wZktAZidvc3eQKqh16hueMt8rJlrWiW1\nIW/fIbat2UHP4aG/N8m8ndnERkbSo0mIT1f3Bgs1OmiH1GM5UYvkD1irzytEA72wxkd+VUcx1T/R\ng8G7wprBEcKaJSTSNjmFuTu22x3KCXUd2okodyTLpzmjrEeoWzFjDfDDepJQNn9nNn2aZRAdGdp1\n7NS7ACQJIjvZHUqNnSiRuFW1chXeecHS7jswYyS1xtpq1wfexXaHckKDM1uyePcuSn0+u0M5rtj4\nGM4a1IFlJpHUihUzVpOYmkDbHq3sDuW49hQeZuuhQwzMCO3xEVUFzwJw90Mkwu5wauxEiSS58h1V\nvb3S3RCshOhQ7t5AjCO6t4ZmtsJbXs6S3btOfLHNeo3sxrY1O8jde8juUBzNKoC5mh7DO4d8Of75\nOx2yZ075VgjsQxy+fqTCiV4Vi0Xk1qMPisgvgSV1E1L9I+K2am85YMC9T7NmREdEMtsB3Vu9R1sL\nEud9EvotvVC2acVW8vYeoudwZ3RrpcbG0T41ze5Qjs8T3H8kDAba4cSJ5HfAzSKSJSLPBm/fYA24\n31nXwdUnEj0Yyrej/tD+pB8TGUW/5s2Z64D1JG26taTTgPa899hH5O0zrZJT9dZDH9AgKZ5Bl4X2\nvi4BVebv2MGgFpkhv+ZFvQshojkSGdpdcNV13ESiqgdUdQBWJd7twdtjqtpfVffXfXj1yJFyKXPt\njaMaBrdoyZZDeew6XGB3KMclItz56q2UFpXx2BXP4vWE9rhOKJr/2RKWTV3F9Q9fTmJKgt3hHNfG\ngznklpY4YHzEb42HhklrBKpftHGWqv4teJtV10HVSxGtwXUG6oDurSHBacCOWOXeJZN73vo1383f\nyEu/+kfIL6YMJTs27Obpm16mTfeWjP31aLvDOaGK8ZFQXz+Cby1oYVisH6kQ2iNn9YiIQPRA8C5E\nNbQ/ObdJTuGMhARHJBKAoVcO4PqHL2fq21l8/NwXdofjCMUFxUwc9xTu6Cge++wPRLlDexEiWOMj\nbZJTaJoQ2i0nvAsAgeh+dkdSa0wiCSESPRi0CHyhXapbRBjSoiULdu7AV15udzjVcsPEKxh8WV/+\ned97rF+8ye5wQt4rd77Fni37efij39OoRehP0PT4/SzZvSvku7UgWF8rshPiSrE7lFpjEkkocfcH\nXA7p3mpFkc/Lt/v22h1KtbhcLn7/xm3c/MQ1tO4a+m82dlo+fRXT35nN1feOo+sQZyyW+3bfXkr9\n/pCf9quBEvB96/iy8Uer00QiIueJyEYR2Swi91VxPlNEZorIahH5RkSaB4+fKyIrK93KRGRc8Nzb\nIrKt0rmwKdUirobW/s0OGHAfkNECd0QEn25YZ3co1RafGMfV944jOrbqAnnZ60N7xtzpsGLmGh67\n/Fky2p/BdQ85p5ze/J3ZRIjQp1mG3aEcn28p4Aur8RGow0Qi1nLNV4DzgU7ANSJy9MebZ4B3VbUr\n8BjwFwBVzVLV7qraHRgGlADTKj3unorzqrqyrn4HW7gHgW8tGsi3O5LjSoyO5spOnflk/XfsKXT+\nHmeeUg9v3P8+VzS+hU9enGJ3OLbImjSfBy/4E40y03h6xiO4Y5yzn8vcHdl0b9KUxOjQrqJrlY13\nO3pb3arUZYukD7BZVbeqqheYBFx81DWdgJnB77OqOA9wOfCVqpbUWaQhRKIHA4EfFiyFsF/26oMC\nj34zi4DDZ0OJCPe/dwddzzmLghwrMQYCob1HTG3JzyngyZ+9xJ+vfYGO/c7kudmPkdYs1e6wqm35\n3t2s2b+PoZmhXb4FCJaN74lIaJfiP1l1mUiaAZXrdO0KHqtsFT+Uo78ESBCRo1/BVwMfHHXsT8Hu\nsOfF6YX8jxbVBSTBEeVSmiUm8sCgoczYtoUXF4d+4jsed4wbb5mPvVv3M/z6IcAPGzlVTBkuKSzF\nUxr6e4BXl6ry9VtZ/Lzjncz+cAHXPXgZT059iITkBnaHVm35ZaXc8dUUMhIb8rNuPewO57issvEb\ng7X1wktdlsesamnp0R9b7wZeFpGbgDnAbuDIhtAi0hToAkyt9Jj7gX2AG3gduBerW+zHP1xkPDAe\noIUTNrgJEolE3QPAMxdVDfkVujd268G6gwf425JFdEhL5/y2Z9od0ilbOWst8YmxtOhgfd6p+LcX\nEQ7uzuX9J/7L+sWbSGrUkLv+MYFGGSFehuM4dm7czYu/+gervvmOswa253f/90syO4X4+MJRAqrc\nPe1rDpYU89EV14R8txbeRdbXMBtoh7ptkewCKr8ymwN7Kl+gqntU9VJV7QE8GDxWebn0lcCnWmlh\nharuVYsHeAurC+0nVPV1Ve2tqr3T00N/+mJl1q6J+6F8i92hnJCI8Pg5I+jRpCn3TP+aDQdz7A7p\npKkqqsq8z5Yw4GLr5VReXn6kJbJv+wE+euZ/REVH8eryp2nXszXfzlxz5PF+n7/K5w1FXo+Pfz32\nEb/sdjdbVm7nztfG89zsxxyXRAD+tmQhs7Zv5cHB59C1cRO7wzkhq2x8w7AoG3+0ukwkS4F2ItIq\nuE3v1fx4bxNEJE1EKmK4H3jzqOe4hqO6tYKtFMT6uDgOWFsHsdsrerD1tWy6vXFUU3RkJK+OGUuC\nO5pffvE5eaXOGs4SEYoLSti+dgeDL7cWiblcriOJZM5HC4l0R3LJby9ARGjWtglz/2t9uszZlctb\nD01ifLff89ZDH4T0jowrZq5hQo97ePfR/zDw0r68se55xowfGfIVfasyY+tmXly8kEs7dOKGrqE/\ncdMqGz8/bMrGH63OXkGq6gdux+qWWg/8R1W/E5HHRGRs8LJzgI0i8j3QGPhTxeNFpCVWi2b2UU/9\nvoisAdYAacATdfU72EUizgD3ELToFdTnjB3+GsU34LUxY9lfXMRvvpqC3yED1fuzc3jt9+/wziMf\n0vKsDNLOsBaJiciRN9h1Czdy1sD2pDe3hu9Wz11H3zG9KC4o5t1H/0NZcRl/mvIAe7bs+1FLJVQc\n2HmQx696jntHPobf6+dPUx7gwX/fSUqT5BM/OARtycvlrqlf0blRY54YNiLku38Bq7ZWYB8SM9zu\nSOpEnW4hpqpfAl8edeyRSt9/DHx8jMdu56eD86jqsNqNMjRJw6fQ3IvR/N9C6n8RV4iXfQC6NWnK\nn4eN5O7pX/Pnud/wyNDQ/69KSGlAg6R4sibNY9+2Ayz4fCldh3aiQZK1b9v273YSlxhHs7ZNiIyK\npPhwCfkHDtO2Ryu++XABDZLiueSO80lvnoo71s22tTvpO6YX29buYOHkZXw7aw2X/+5C+o7pdVrH\nvPL2HWLZ1FUs+mIZi6esAODGP17FlfeMddS03qMVejxMmDKZ6MgIXhszlpjI0C/dAqClH4AkQsx5\ndodSJ0J7L8p6TCJSIel5NO9GtOAuSHrNEU3iSzuexXc5B3hr5Qo6pjfiik6d7Q7puOISYrn+4cu5\n/uHL+X75FgoOFrJw8jJ8Hh/DrhtMXGIsfp+fitnNsz9cQHLjhrhjotifnUNG+zNo1CIdr8dHSpNk\nUs+wPuU/fePLnH/LcM6/ZTj/eWYy6RlptO5ad6uuy/3lrF/0PUu++pZlU1eyacU2AFKaJHHez4dx\nxd1jadKyUZ39/NMhoMo9079me/4h/nXJFZyRkGh3SNWipZ9D2VcQ/6uwm/ZbwSSSECbusyHxYfTw\nRLToWSThD3aHVC33DxrKxtyDPDxrBm2TU+jR9Ay7Q6qWM3u1OfL9gR05xMRFExMXjc/jZ9PyrSSk\nNOB/r03jhkeuINIdiafES0ZwhteOdbso9/mJiYtm0RfLiW0Qw9jbrIq5S75cQe6evFpPJKVFpSyb\nuor5ny9h8RcrKMovxhXh4qwB7bn5iWvoc34PWnfLdOQYSFVeWbqIaVs38/CQc+nX3BmTA9S3Di14\nCKLORhrcfuIHOJRJJCFO4q5BfRuh+J9oZHsktqo1m6El0uXib+ddyCUfvs+vvpzM51ddT+MGzlmb\nANCoRfqRrqixt43m7Uc+ZOrbWVz0q9EMuPhsDucWsvKbtdz42FUArF+8iUh3JGnNU5n94XzOvdpa\nK3A4t5CWZ2Wwe/M+zj6FODylHg7tLwje8tm7ZT9b12SzbXU229fuxOf1k5iaQP+Le9NvTC96juh6\npFsunMzctoUXFi1gXPuO3BTi60UqaCAPPfRrcCUjSS8i4oxuuFNhEokDSOKDqH8zWvAgRLZCokJ/\ny9Pk2Fj+76JxXPaffzNhyudMuuwqoiOd9XKrGM/oMawLPYZ1oazEQ0yctVahrLiM1KbJlBSWUphX\nxLS3s7hh4pWkN09h/ZLNXHHPxUeu27omm5E3DAWocpxk6ttZ7Nq4h4KDhRzOPUx+zmEO7S8gf38B\nJYWlP4krpUkSrbpmcslvx9Dngh50HtiBiMjQ7/Y8VdvyD3HX1K/olN6IPw8f6YjBdVU/mv87COQg\nqf9GIpy75qg6nPWXXU+JREHyS2ju5eih2yD1EyQi9Pu726em8eyo8/nVlMn8fPKnvDrmIhKjndtH\nXJFEANKap9J/7Nn8qsc9dOjXjkGX9qPP+T1Y9MVyAv5yUpsm4yn1kL1uF54SL92HWWNFVb0JTv77\nVLau2k5iWiKJqQ1omJbImb1ak9SoIcmNk0hpkkRy44YkNU6icWYaSekNT9vvbLe80hJ+MflTIl3C\na2Muds7getFz4F2IJP7FER/8akrqw45xvXv31mXLltkdRo2pbwOadzVEtkNS3sMp1WE+Xb+O+2ZO\npWmDBJ4bfQE9HTJmUl2H9ufTMD0Rl8vFukXf8+XrM7j7zdtYO289s/49j8yzMrj41+cRCASqHK8I\nBAKIiCM+aZ9Oh0pLuXnyJ2w4mMO/Lrmcs89obndI1aKlX6IFd0LstbgaPmp3ODUiIstVtfeJrguP\nUbh6QqI6IA2fAt8qtOARx2wbe0nHTvz7sisJoFz58SQen5NFkTd0F+6drOTGSUcSxJm9WuP3+7mh\n9W28/ciHdB7UgVE3Wt1axxr0drlcJokcZfb2bVz84XtsOJjDK+df5Jwk4vsePfwARPVAEh+wO5zT\nxrRIHChQ+BIUv4wk3I/E32x3ONVW6PHw5Pw5TFq7mkbxDXh4yDmc3/bMsHwTLTh4mIO782jTraXd\noTjKgeIiHp+TxZRN39MmOYWnRox2TAtWA4fR3MtBi5HUT5CIxnaHVGPVbZGYROJAqgE0/w7wzECS\n/xEsPe8c3+7dwyPfzOS7nAMMysjk0XOG0To5fLYdNU5eeSDAv9eu5q8L5uItL+f2s/txa8/ejpmg\noVqO5k8Az3wk5V3EfcL3XkcwiaSScEskABootsZLyvciqR8hkQ7Yi6GS8kCA99as5NmF8/H6yxnf\n62xuO7uPYwZTjdqzPucAD86awcr9exmQ0YLHzx1BqyRnlW8JFL4AxX9HEh9F4q61O5xaYxJJJeGY\nSADUvwvNvQxcSVYycTljpW9lOcXF/GXebD7buJ6MxIY8MvRchrdqc+IHGo5X7PXy4uIFvLVyBUkx\nMTw4+Fwubt/BcV2dWjYNzb8dYi9HEv/kuPiPxySSSsI1kQCodwmadxO4ByDJ/+eIMipVWbRrJxO/\nmcmmvFxGtm7Do0OH0zQh9OuLGadm+pbNPDp7FnuLCrn6rC78YeBgkmJi7Q7rpKl/M5p7BUS2QVLe\nd8xMyuoyiaSScE4kAFoyCT38CMT/ApdDyqhUxVtezpvfLuelJQuJEOHuAYO4vkt3IsKkxIcBuwsP\n89jsWUzfuoX2qWk8MWwEvZr+pDarI2ig0OoR0KLg4Hro74lysqqbSJwxkmUcl8Rdjfo2BMuodERi\nL7I7pFPijohgQu8+jGnXnoezZvDH2Vl8tmE9fx4+io5pztqczPgxfyDA2ytX8MLiBagq9w0cws3d\nexIV4cwWtGoALbgbynchKe+EZRI5GaZFEiZUvWjezeBbjaR+gESFdtXdE1FVJn+/gSfmZFHg8XBr\nz978pk8/MxjvQKv27eWBWdNZfzCHYS1b88dzhtMs0XnjeZVp0d/Qor8hCQ8h8T+zO5w6Y7q2KqkP\niQRAy3Otpjbl1uB7GHxKOlRayp/nzea/678js2ESfxo2kgEZLewOy6iGQo+H5xbN591V39IovgET\nhw5jdJu2jh+M1rIsNP+XEDMOafiU43+f4zGJpJL6kkgA1LcezbsWXI3Cqsk9f2c2D82aQXZBPpd1\nPIv7Bw0hJTbO7rCMY5i2ZRMTv5nFgeIiftatB3f1G0hCtPMHotW/3fqwFpGBpE4K2/1FKoREiRQR\nOU9ENorIZhG5r4rzmSIyU0RWi8g3ItK80rlyEVkZvE2udLyViCwWkU0i8mFwP3gjSKI6Isn/hMAB\nNPcKtGyqY0qpHM/AjEy+uu5n3Na7L59vXM+of73Np+vXhcXvFk72FRUyYcrnTJgymZTYWD658lom\nDh0WHknEtx499HMgAkl6OeyTyMmosxaJWPNQvwdGAruApcA1qrqu0jUfAV+o6jsiMgy4WVVvCJ4r\nUtWfbGIhIv8BPlHVSSLyGrBKVV89Xiz1qUVSQX3foQX3g38DuAcjiRORyPDoEtpwMIeHZk1nxb69\n9G+ewePnjjAr420WUOX9Nav46/y5+AIBftu3P7f06OXYwfTKVBXKPkULHgVXIpL0CuLuZndYp4Xt\nXVsi0h94VFVHB+/fD6Cqf6l0zXfAaFXdJVZHY4GqJgbP/SSRBK/JAZqoqv/on3Es9TGRgLUnAiXv\noUUvgvqQBhMgfjzh0IgLqDJp7WqeXjCXMp+fqzp34aIzO9C9SVMizXTh00ZVmZ29nRcWL2D1/n0M\nzGjBE+eOJDMpye7QaoWW70YPPwaeLHD3RRo+H/Z7i1QWCtN/mwE7K93fBfQ96ppVwGXAi8AlQIKI\npKpqLhAjIssAP/Ckqn4GpAL5quqv9JzOnIR+GohEQvxNEHMeWvgXtOglKJ0MiROR6IF2h1cjLhGu\n7dKNkW3a8tzC+Uxau5p/rV5Jw+gYBrfIZGjLVgxukUmjeGftzOgEJT4fC3Zmk7V9G99s38reoiLO\nSEjg2ZHnM65Dx7AYfFb1Qck7aNHfAEES7oO4Gx274Leu1WUiqerVdHTz527gZRG5CZgD7MZKHAAt\nVHWPiLQGZonIGuBwNZ7T+uEi44HxAC1ahEeXzqmSiCZI0ouo5wr08GPooZvRmPOt6sEOH4xPj4vn\nL8NHcf+gIczbkc032duYvX07X2zaCEDHtHQGZ7ZkaIuW9DqjGe4w6GqpDW+tXMEn67+jZVISd/QZ\nQLvU1GNeq6psOJjDnB3bmbsjm2W7d+MNlNMgys3AFpnc3b8tY85sHzb/tupdgR6eCP6NED0cSXwY\niXBGBWK72Nq1ddT1DYANqvqTjQdE5G3gC+C/mK6tGlH1wv+3d+dxUlVXAsd/p6q6qquqF3pFlKXZ\nNLTGoCxKVEBFcRI/GjSJS0w0ceLEmGXMmERHYwyGjxqdyYyZMasaiRM1apwQNRoEZBEXUBFtBlmU\nTanFT7kAABUxSURBVJDeoLvp6q7uqjrzx3vdlNjQrUUtFOf7+bxP1/Le61OXps679757b/tv0T2/\nAvEhRd+B0Jed2kueSPR88W3exOLN7/Lqju3EEglCBQVMGTqM02tGccbIURxRlN9TsHR0d3Pv66/y\n57VrmDFyFJcdP57hpYN4adtWHv+/Oi47fjwvbdvClpYWvjFhMsNKS/tcCviu5cu4Z+XLgLPq5dQR\nNUwdUcOkI4fmTfIA0MRutO0u6PgTeI5wEkjhWdkOK6tyoY/Eh9PZfiZOTWMFcKmq1iXtUwk0q2pC\nROYAcVW9WUTKgIiqRt19XgTOV9U1bgf940md7atV9Z4DxWKJ5MM0tsVp++1aAr5jnM74PJn6el97\nurp4adsWFm/exJLNm9ja2gLAcdWDOcNNKsdVD8ZziDbJ7Ghr47evrWDx5k1cMO5YLjnuk5QHQzy5\nbi3PbFjPDadO48E3V7Fzzx7+feZnuH/Va7z+/nbuPudcdrS18XDdaor8fr5+4qQ+E8mahnrWNNRz\n2vAaBhflX1Oh05n+F7Ttdki0QOgrSNF3EE8426FlXdb7SNwaw7eAZwEvcJ+q1onIbGClqs4DpgO3\niYjiNG1d4x4+Dvi1iCRwblG+Pelurx8CD4vIT4HXgXvT9RnymfiGQ9lvITofbZ2DNl+KBi9Air6P\nePffzHEoKvL7mTFqDDNGjUFVWd/cxIJ3N7Lw3Xf4xSsvcvcrL1IdDnN6zShOrxnJKcNGEPbnxg0J\n8USCDbuaqavfCcC0ESOpCIV6b3sWEZZu2cTuzk7uP/8CHql7kzteWModM2aytbWF6qIijiop4bxj\nxvHg6lW8tG0rQ4tLWLn9PQDKg0FqSstYvm3LfmOoraqmtqo6/R82CzS2AW39CXS9DAWfQsruQwpq\nsx3WISet7Rmq+jTw9D6v3Zz0+DHgsT6OWw58cj/nfAeYfHAjPTyJCBSeDf5T0fZ7oP1+tPM5KP4e\nBC/Ky45FEeHoikqOrqjk6okn0RSJsGTzJhZu2shT69/mkbo38Xu8TD5qKDNGjebs0WOy2gT27Mb1\n/OrVFYwtr8DrEZZv3cKdZ53TW2to6exkfXMTU0fUMLx0EJ8ZczQ/fn4BjZEIqjCspBSAocUllAeD\nrG9uYmx5BbFEHICAz0d1Ubh36eN86CgfCNUOdM8vof1ekBBSMhuCX0TE7vj7OPKnYdx8bOIJIcXX\nocHPOZ3xrbdA5DEovQUpOD7b4aVVRSjErHG1zBpXS3c8zsrt77Fo0zss3PQOtyxeyC2LF3JsVTWf\nHjacI4uLqQ4XUR0OUxUKUxkKEypI79xfnxo8hPvPu4CKUIjWaJRvPj2Ptxrq+WS1s4yr1+PhvdZW\nzj36EwCMKa8gVOBne1srHhGiMefeleJAgKCvgGgsRnU4TGMkQntXF2G/n87uGFWhUO/zfKedi9C2\nWyG+DQpnIcU/yLtaeKZZIjG9xDcGyh6Azqec24WbvoAGL0GKr0U8pdkOL+0KvF6mDBvOlGHD+dfT\nprPBbQJb8O47/H7Va3QnEh86JlRQQGUwREUoREUwRHkwSEUoRHnQeV4RClIZClMZClFeGPzIU+L3\nTG4YSyQoCQTY0dZGdWhv232R308skaA12omqEvD58Ho8dLoJY21jA42RCJWhEG1dUYYUFTOqrBxV\nWLZ1MzNHj2XZ1s2MrajM+ySi8ffR1p9C9O/gHY2UP4j4rXHjYLBEYj5ARCB4LgSmOeNOIn9Ao89A\n8fVQeP5h0/QBztX9mPIK/mnCZBKq7OrooL59Dzvb22mMtNMYidAQaaepI0JzpIP32lpZXf8+zR0d\nxPpIOl4RKkIhqkNhKsNhBifVbmaOHktVuO/OXVXF5/HwyFurOeGIIb3TjcQTCbweD0OKi3mvtZW2\nriglgULiiQS7OzuYOXosf167hrr6nUyrGcn6pibGlDtX3tdMPom/rlvLHS8s5YhwERcfd3zv78q3\nf2NnTMhcZ0yIJpCi70H4a3kxMDdXWCIxfRJPMVJyIxqchbbegrb8ADqegJKfIL6abIeXcR43CVSE\nQozrZ2kUVaU1GqUx0k5TRweNkQiNkXYaIu00tLdT7/6sq6+nqSNCQpVhJaVMC4/s83wiQn37Huat\nW8s3Jk4mVFCAqvbWbqbXjOSpdW9TW1XN8YOPYFBhIbFEgrDfzwWfqGXu6lXcuGg+k44cytThNQCc\nOXI0R5dX0hmLMbq8HI9IfiaRrjfQ1pvcMSHTkeIfIb5h2Q4r79jsv6ZfqgnoeNi5x167kKJrIHyl\nXdEdBLFEguaOCMX+AME++lt6vtzvWr6MylCIK8af2PteR3c3itO89vBbq/nz2jVsb2vl7FFjuPG0\n6Xg9HuKJBFtaWxCgZlBZ5j5YlmlijzM1UGQueKqQkh9B4Oy8S5TplvVxJLnEEsnBofGdaOsciD4D\nvjFIyey8HXuSSxa++w43P/8cnx17DF3xOCLCWSNHU9dQz7iqKk4ZNoJoLMa7u3dRGig87Ne6185F\nzi29iR0QvAQp/hfEc3iXyceV9XEkJv+IdzBSdnfvf1Rn7MkXkeLvHxad8dlS376HQYFCgr4ChpaU\ncsIRQzimopIpSQt8BXw+PnGYL0es8Xq3M/0Z8I1FBj2E+E/s/0CTMquRmI9FExG3M/4B8JQixT9w\nbqW0pgOTYU7T65/QtjtBo0jRNyH8j9b0ehDkxMJWJn+JJ4Sn5Hqk4nHwjkBbrndqKN1vZzs0cxjR\n7jVo80Vo681QUItU/hUp+qYlkQyzRGJSIgW1SPlDSMkciG1Em2aRaPs3VDuzHZrJY5poJ9F6G9p0\nAcS3IaV3ImVzEV/fd76Z9LJEYlIm4kFCX0CqnoHgedD+a7Txs2j0hWyHZvKQRhejjedC5H5nWpPK\nZ5Dg4TXGKddYIjEHjXjK8ZTejpTNBbzorq+S2HU1GtuQ7dBMHtB4A4nd16K7vg5SiJQ/hKd0tt3o\nkQMskZiDTgInu23V10LXS2jjuSRabkJjW/s/2Jh9qHah7b9DG8+Gzr8jRd9GKv+C+CdkOzTjstt/\nTVqIBKDoaghdhO65ByIPoR1/Qn1jwT8VCUwF/wTrFDV9Uo1D95to9HnoeBwSOyFwOlJ8vfWD5CBL\nJCatxFOOlNyEhr8GnX9Do0uceY8i94KEUf/JSGAaBKbacqaHOY03QddS528kugx0N+AB/xQkfDsS\nOCXbIZr9sERiMkK8RzrTqoSvRBPtTpNXdAlEF6PRBQCobwz4T3NrKxOdWo3JW6ox6H4DjS6D6GKI\nveW84alw5sUKTIXAqYhnUHYDNf2yRGIyTjxhKDwTKTzTWekvvtFNKMsg8iAauR8kiPonI/7TnNrK\nYThRZD7S+A6ILkWjS6FrOWgb4IGC8UjRP0NgKvhqbYGpQ0xaE4mInAP8J85Su79T1dv3eX8EcB9Q\nBTQDl6nqNhEZD/wSKAHiwBxVfcQ95vfANKDFPc0VqroqnZ/DpI+IgG+MM3dX+Eo0EYHuV5wvmugS\nNLoY2kC9wyBwmpNY/CchnvxbOzwfqXZC10qn9tm1DHru4PMMhsKZbu1zit15dYhL2xQp4qzTug44\nC9gGrAAuSVp7HRF5FHhSVR8QkTOAr6rql0XkaEBVdb2IHAm8CoxT1d1uInnSXaZ3QGyKlEOXxrbs\nbTfvehk0Avig4AQkcCoETgXfsXYFmyNUFWLroWuZM46o6xUgCvjBP8n5N/NPdS4cbNxHzsuFSRsn\nAxvcNdYRkYeB84E1SfvUAte6jxcB/wugqut6dlDV7SJSj1Nr2Z3GeE0OEt9w8H0JCX0J1S7oeg3t\nWgrRZeien8Oen4MMQgOfRgKnO23rdnWbUZpohuhyt7nqBUjUO294R0PoYjd5TEYkmN1ATdqkM5Ec\nBSQPHNgGnLTPPm8AF+I0f80CikWkQlWbenYQkcmAH9iYdNwcEbkZWABcr6rRNMRvcoyIHwInI4GT\nofj7aLwRupa7V77L0M6nAS/qn4QEzoTCGYj3qGyHnZc0thk6/45G50O327IsgyAwxe3XOgXxDslu\nkCZj0plI+qq37tuOdh3wXyJyBbAEeA+I9Z5AZAjwB+ByVe1Zu/QG4H2c5PIb4IfA7A/9cpGrgKsA\nhg8fvu/bJg+ItxKC5yHB85wZYLvfRKPPQXQB2jYH2uagvlqkcAYEzgDfOGtO+ZicJqs6tPM5iD4H\nMbfRwHcsUvRdCJzmNjF6sxuoyYp09pFMAW5R1Znu8xsAVPW2/exfBKxV1aHu8xLgeeA2VX10P8dM\nB65T1XMPFIv1kRx+NLbJSSid86H7dUDBM8QZ1OafBAXHg3eoJZYDUI1C18todCF0LnIWisIDBRPc\n5HwW4hua7TBNGuVCH8kKYKyIjMSpaVwMXJq8g4hUAs1ubeMGnDu4EGe48xPA3H2TiIgMUdUd4nwD\nfA54K42fwRyixFcDPnfcSrxx73iVzifQjj+6O5U5I+29FeCpQDwV4Cl3t57HZSCledWZr6qg7ZBo\nhsQu92czJJrQRAPEdzojyWNvOzc3SBD8n0YC34XC6YinPNsfweSYtCUSVY2JyLeAZ3Fu/71PVetE\nZDawUlXnAdOB20REcZq2rnEP/yIwFahwm71g722+/yMiVThNZ6uAb6TrM5j8IN5KCF2IhC50Ouxj\n65xmsO43IfYudK+FRDOqLfs5gwf1DHISi5TtTTCecsRT5iadKjchVYGUZLSmo5pwRoHHmyCxd9PE\nbtBdbrJI3pqB7r5PJmHn1lxvNQRnIYHp4D/ZBoeaA7IVEo1xqXb3Xpk7m/PFq71X7ElfxLoLEruB\nRB9nCjhfxJ4q8A4GTxXiqQZvlfOap9L9Wbbfmo5Ta2iFeL0bixODJpog0ehuDRBvcB7vNzEMgp4k\n6Clzt0FOraI3Ke7dxBM+WMVp8kAuNG0Zc0gRKXC++L2DP/j6fvZ3agItzhd9vOfLvR6NNzi3wCbq\n3drOElTb+ziDF+2pzYgftBvodpqd4g044y8+FKX7pe8mI/9o8FY6icpT6daOeprlShGx/+Im/eyv\nzJiPScTjXtWXOaPze17vY19NtDs1iJ7aRLzerV00OJvGwFMA+Jw+iUAV4tZmnATRU3sY5CQ8Y3KI\nJRJjMkA8YfCEgZq9r2UtGmMOrvy5FcUYY0xWWCIxxhiTEkskxhhjUmKJxBhjTEoskRhjjEmJJRJj\njDEpsURijDEmJZZIjDHGpMQSiTHGmJRYIjHGGJMSSyTGGGNSYonEGGNMSiyRGGOMSYklEmOMMSlJ\nayIRkXNE5G0R2SAi1/fx/ggRWSAiq0XkeREZmvTe5SKy3t0uT3p9goi86Z7zbsnkmqbGGGM+JG2J\nRES8wH8D/wDUApeISO0+u90FzFXV44HZwG3useXAj4GTgMnAj0WkzD3ml8BVwFh3Oyddn8EYY0z/\n0lkjmQxsUNV3VLULeBg4f599aoEF7uNFSe/PBOararOq7gLmA+eIyBCgRFVfVGex+bnA59L4GYwx\nxvQjnYnkKGBr0vNt7mvJ3gAudB/PAopFpOIAxx7lPj7QOY0xxmRQOhNJn0tX7/P8OmCaiLwOTAPe\nA2IHOHYg53R+uchVIrJSRFY2NDQMPGpjjDEfSToTyTZgWNLzocD25B1UdbuqXqCqJwA3uq+1HODY\nbe7j/Z4z6dy/UdWJqjqxqqoq1c9ijDFmP8TpakjDiUV8wDrgTJyaxgrgUlWtS9qnEmhW1YSIzAHi\nqnqz29n+KnCiu+trwARVbRaRFcC3gZeBp4FfqOrT/cTSAGw+uJ8wrSqBxmwHkWVWBlYGPawcslcG\nI1S13ytxX7p+u6rGRORbwLOAF7hPVetEZDawUlXnAdOB20REgSXANe6xzSJyK07yAZitqs3u46uB\n3wNB4G/u1l8sh1SVRERWqurEbMeRTVYGVgY9rBxyvwzSViMxH1+u/9FkgpWBlUEPK4fcLwMb2W6M\nMSYllkhy02+yHUAOsDKwMuhh5ZDjZWBNW8YYY1JiNRJjjDEpsUSSA0SkXETmuxNUzk+aVyx5n/Ei\n8qKI1LmTXF6UjVjTZSBl4O73jIjsFpEnMx1jugxgctOAiDzivv+yiNRkPsr0G0A5TBWR10QkJiKf\nz0aM6TaAMvieiKxxvwMWiMiIbMS5L0skueF6YIGqjsWZe+xDf0BABPiKqh6LM1Hlf4jIoAzGmG4D\nKQOAO4EvZyyqNBvg5KZXArtUdQzwc+COzEaZfgMshy3AFcAfMxtdZgywDF4HJroT3T4G/CyzUfbN\nEkluOB94wH38AH1MRKmq61R1vft4O1APHFLjY/rRbxkAqOoCoC1TQWXAQCY3TS6bx4Az83D5hH7L\nQVU3qepqIJGNADNgIGWwSFUj7tOX+OBMH1ljiSQ3DFbVHQDuz+oD7SwikwE/sDEDsWXKRyqDPDKQ\nyU1791HVGNACVGQkuswZSDnku49aBlcygAHZmZC2ke3mg0TkOeCIPt668SOeZwjwB+ByVT2krswO\nVhnkmYFMRDrgyUoPYYfDZ+zPR5mU9jJgIs5kt1lniSRDVHXG/t4TkZ0iMkRVd7iJon4/+5UATwE3\nqepLaQo1bQ5GGeShfic3TdpnmzuHXSnQTH4ZSDnkuwGVgYjMwLn4mqaq0QzFdkDWtJUb5gE9ywlf\nDvxl3x1ExA88gbOi5KMZjC1T+i2DPLUCGCsiI91/44txyiJZctl8Hlio+TcAbCDlkO/6LQMROQH4\nNXCequbOxZaq2pblDae9ewGw3v1Z7r4+Efid+/gyoBtYlbSNz3bsmSwD9/lSoAHowLmCm5nt2A/C\nZ/8MzkzZG4Eb3ddm43xZABQCjwIbgFeAUdmOOUvlMMn9N28HmoC6bMechTJ4DtiZ9B0wL9sxq6qN\nbDfGGJMaa9oyxhiTEkskxhhjUmKJxBhjTEoskRhjjEmJJRJjjDEpsURiTBaJyOXujMfrReTy/o8w\nJvfY7b/GZImIlAMrccbKKPAqMEFVd2U1MGM+IquRGJMBIjLJXUOiUETCIlIHXAPMV9VmN3nMx1ki\nwJhDis21ZUwGqOoKEZkH/BQIAg/izFRwuM94a/KA1UiMyZzZwFk4TVk/w2a8NXnCEokxmVMOFAHF\nOPNn2Yy3Ji9YZ7sxGeI2bT0MjASGADfjdLCf6O7yGk5ne75NEW/ynPWRGJMBIvIVIKaqf3TX5l4O\njAduxZk+HGC2JRFzKLIaiTHGmJRYH4kxxpiUWCIxxhiTEkskxhhjUmKJxBhjTEoskRhjjEmJJRJj\njDEpsURijDEmJZZIjDHGpOT/AahUdilhe68IAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"m.draw_mncontour('x0','Gamma',nsigma=3)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD8CAYAAABuHP8oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvX+wZFd13/tZ3ffOjISkCDR6kR5CCArlObKdEvYYOeUq\ng7ETCxcF2PBsyRV+uKhS4cDLcxJcQOyCV4opwHEZ4weBTIwsYfMQsWJAiUUIliGyK0A0gPhdgCxs\nM9ZgSQhkw+j+6l7vj7NPn7XvWbvP6Tt953bfu75TXXfP3vvss0/36d3f810/tqgqgUAgEFg+DPZ6\nAoFAIBDYGWIBDwQCgSVFLOCBQCCwpIgFPBAIBJYUsYAHAoHAkiIW8EAgEFhSxAIeCAQCS4pYwAOB\nQGBJEQt4IBAILClW9noCs+Do0aN6xRVX7PU0AoHAEuCTn/zkQ6p68U6P/8kfe4x+8+FRv3N9dv1D\nqnrtTs+1UyzVAn7FFVdw4sSJvZ5GIBBYAojIX57J8d98eMT/+tDlvfoOL/3q0TM5106xVAt4IBAI\nnC0oMGa819OYiljAA4FAwIGibGo/CWWv0GnEFJGbROQBEfl8of17RORjIrIuIq/c1natiHxZRO4V\nkVeb+ieJyCdE5Ksi8l4ROXTmlxIIBALzxbjnv71CHy+Um4Fp4vzDwL8AfsNWisgQeBvwLOAq4HoR\nuSo1vwl4s6peCXwLeOls0w4EAoHdhaKMtN9rr9C5gKvqXVSLdKn9AVW9G9jc1vQ04F5VvU9VN4Bb\ngeeKiADPBG5L/W4BnreTyQcCgcBuYoz2eu0VdlMDfzzwdfP/k8A1wEXAt1V1y9Q/fhfnEQgEAjND\ngdEeLs59sJsLuDh1OqXeH0TkBuAGgMsv7+fSEwgEAvPAXrLrPtjNBfwk8ATz/8uA+4GHgAtFZCWx\n8LrehaoeB44DHDt2bLHfzcBcMf7GP2jXGYPRSJvyUNpq4GCbQji45CtznF1gv0OBzQXfcnI3Q+nv\nBq5MHieHgOuA27XahPMjwAtSvxcDH9jFeQQCgcDMUJRRz9deoZOBi8h7gGcAR0XkJPA6YBVAVd8h\nIpcAJ4ALgLGI/BJwlar+rYi8AvgQMARuUtUvpGFfBdwqIr8GfBp453wvK7AIqBl0yc2qZtD2MdX2\nPUcOz3U+3z31xIyVD1w1r2Hz2xm8RbD5AwCF0WIT8O4FXFWv72j/BpUM4rXdAdzh1N9H5aUSCBTx\nqK4DZG5aRU0yVZcXZb8+ECihisRcbEQkZmAmbH3jKQDFCLXdZNCLhGlsflWar1Uw9WWGMCoQgkVB\nLOCBXcN3xmutOsugPe0wa0/Mu8SCvOOH5gs3KNQ37eK3O2w+GPzBQ2XEXOzPPRbwgIuaaUPOtldl\nuBfTWVqsn3oykLNyCGa+DKj8wGMBD+wjnB5vALBpeLHHmi0sg/ZYszUU5X3bX55xdrjDqgvft2Ey\nmJbMkkNznMvW1fZtt6+akbeofvBWiB+7Zcc4GHhg0eGx7WDauwuPmQcrXywEAw8sLWqmDTnb3kxM\ndtMw6c2CY0h985dYc91e+pLU7KfUPnL49NAG9zhsfyDqt1uGnf4zC5sfSnPe1TTvI6auZuUQzHxZ\noIh7jy0SYgEPBAKBAkJCCSwMwjC52AiD52JBETZ0sb8bsYAHXLlk3UgRG8YwuZnkjE1tHi2txOEx\nllEmmwz699X24+sY/7yuXILNlZLKjlQCubQyaS/IMV7fQ6bvamrfZKupM9e6Ks2P55EweC4sqkCe\nkFACe4AwTO4frJ96crDyPUIYMQMLA8u0141RzWZcq9n2prlxLduuyxuGMW46TBkaBl1izdv7VX09\nVj5w+3qwxsSsfmJ49C2u9ri+bN722zSsejX19Vh51W7f+3FqN8drw9wPS3xF9wqq0nm/7TXi7lhS\n2FSrm+kLbz0dDsvqWZ9T4Ozh0VNPAtqfczDz+cIjFIuEWMD3Kb4zXp+Ua13bY9pVe5ttW1btse1N\nbW4da+gZO3p3icWMJ+3T3QTHJYbvuREapjxw2PgwY9K+G2HNtnNWPm71tWz+kGXQspX+NsccMXq4\nx8wtK1+1bpupbFl5SGFnB5URc7GXyMWeXSCDt8FBIGBRM/NzLv3aHs9k+RFGzMCuoU61Cja4xgbc\nzK5rQ8O218bNrbGZMfCqbNnv2rh5jM+9TNo3f65nO6HyHXr3uOCl4mnfliH77QU2XtcV2PxwwtDt\nU4z1OKneI8vKN82OQR4z79LLLSvPGHq4g+4qSk+Hi4JYwJcAwbwDs6Jm4hBsfKeYZySmiBwB7gIO\nU627t6nq67b1OQy8C/hB4JvAz6nqX0wbNxbwJYJl3WuGedU+2zvVtT22vWl0basD1vVlDbzNoEus\neVLX6Rs+ndVbeLo3NKzZ8+G27dCfzVsGf2SwOSnXzNtj5bYdGmZuWfkh89kekdoF1Pdi8Zj5uWHA\nnhu67rcZsA48U1W/IyKrwJ+JyAdV9eOmz0uBb6nqU0TkOuBNwM9NG7RzdiJyk4g8ICKfL7SLiPy2\niNwrIp8VkR9I9T8mIveY15qIPC+13SwiXzNtV/d7DwKBQODsoEpmNej16hyrwnfSf1fTazubeC5w\nSyrfBvy4yPRE9H0Y+M3AW6movYdnAVem1zXA24FrVPUjwNUAIvI44F7gv5vjfllVb+tx/gOJkE0C\n80LIKTuDItmT6JlCRIbAJ4GnAG9T1U9s6/J44OsAqrolIo8AFwEPlcbssyfmXSJyxZQuzwXelXab\n/7iIXCgil6rqKdPnBcAHVfV01/kCbdTSyWnjSrZmjF5r2g5vt+W1JHdYqcMzTFZ9Vlp1nlyy6cgq\n28vdboDSavdzgE8PFLKw8ofvRqhT222fLjnGBt/Y96N2I/RcCyGXW3yDZ9O3lro8WaUat7meIxM5\npRk/5JSdQ7U7cMzgqIicMP8/rqrH8/F0BFwtIhcC7xOR71NVq2x4bHvqtsrz0MAnvxoJJ1OdXcCv\nA35z23GvF5HXAncCr1Y1Au8BRbDuwG4j3AxngcwSyPOQqh7r01FVvy0iHwWuBewCfhJ4AnBSRFaA\nvwc8PG2seSzgU381RORS4PuBD5n21wDfAA4Bx4FXATe6g4vcANwAcPnll89hussBz2BpWffpsZj2\n5PpXMCz2NUxWYxxq1XUzdL/suhE6YfPFQJ9Og6a3I4/N9+0YI8V3LfRC7EtsvmboqwWGXbvzZeH1\n4j/R1Md5rByMQdRh5ZAHCI0m12vnGmH5O4UyEwOfChG5GNhMi/c5wE9QGSktbgdeDHyMSrX4k6Rs\nFDGPT7T+1ahxGXC/+f/PAu9T1ckdauSVdRH5XeCVpcHTY8hxgGPHjk29mGVEsO7AXiB08X6Y44YO\nlwK3JB18APwnVf2vInIjcEJVbwfeCfyeiNxLxbyv6xp0Hgv47cArRORWKiPmI9v07+upGPcEtUae\nLKzPI3+MOLAouQmeTmWPdVfl6mP8bmLPMJuuvaarreNKDL1xIzR1Y79vs6OOz5q9KDcbOOEx7C69\nvKRxu+liTd2gi63THitj4APLwKv6I7JpjmneY1s/YesOK4eGmZfcEMfWSWHC4vOdRbcjmHg/KDK3\nDR1U9bPAU53615ryGvB/zjJu5ycpIu8BnkEl0p8EXkflAoOqvgO4A/gpKi+T08AvmGOvoGLn/2Pb\nsO9OjxQC3AO8bJZJ7wcE8w4sCoKN+1DyH9ZFRB8vlOs72hV4eaHtL6gMmtvrn9lzfvseXawbGuZt\nWfd3DWuuGfR3x4cndTvRtW19qe96CpvfHPfRwPt6mVjW3RU+358R5Qx7umdJca/MSbsJmBmk1AVZ\nCtjmumsGvjlo11XHtes9Vg7NAlLyYslQTzFrDza+c0jkAw80CNYdWHTU27odvvS+PZ7J3kOZayTm\nriAW8D1CzbxLrHtN23q3x7qhYd627rTDxku69vq4rYHnGvd0DXwra29u+K068VWBNddfjlwXn52h\nW3Qx7NKGDpaB12N4Ca4AVsZ1eHtzrpWB9TipyocdVg6+Xm5ZuWXjm5NQ+rZ/fbqgNuxbYNj4cMLA\n20wc4JzwGW8hGHggEAgsIVQlGPhBR8gmgWVELaXAwZVTKiPmYqfojQX8LMIzWJZkk9PjtsHSk01s\nvZVNbI7uur1LNoFGLikbMatbxsoaWwW5ZcuTSLTtUmhlE991sCTBTA/k8eoHjmGz3Nd3Q1xJcsaW\nkU1WrHQk7fcwk1CM2+XhJKdYWaXLyFlEmkL22D9ut+cSSltOCSmlRuyJeWARzDuwX3BQ2XhlxAwN\n/ECjy02wi3VXfdpugp7B0rLujI0n42XGujvcANcNS/SMlFsO0y7VjwvBOR4Dt2jcEPeKgWurDmAl\nMXNruFxxDJqHTfKxLesaaI6r32+PlYNh5pYI+nZacwFNMXOJHLfbg41PxxwjMXcFsYDPEcG6A/sd\nB4mNzzMSc7cQC/guoa+boGXda4Xw9i43wZp5e6wb4PSoql8vhLx7bHuzg1WXGbjZ9Sf16WLgWmLY\nTGfg3nFSYM2TOsNIZQa2vjIwDLtm4Oa6MwbuvEeWrXvM3GPlVd+2EW0sM7DCTjdD2zBKVeFmWCM2\nNd7nCNYdOKjY70E/qrA5jgX8wGAnXiaWKdtkVLN4mdT1p8eH3PZHU/36qDlXzsbbbHvDsnKHYVum\nXWLgo7qvadcCG5/WXkqo6WnnOcNuH2NZdRdbF0f3BhgOag28zcoBDg0HrTEPWdbtMPOSXu7CNnfp\n4RbOWjRw39zpujgcDDZeSSixgO87BOsOBBrsZ108IjH3OdabNOczeZl4KWB36mVSM2+PdUPDvB81\n7ZaNW4ZcM++MYTts22PakHu31PUjkwbXsmZPw7asvCaHJY28SwP3NO4s+2pHX8vmtwYm2VVi3qtG\nt94ybLx+jywr3xo079Ehx3/csvLDw4aNd8Kw8UG94UeBlU9S4pY8WlyyeXC9VMKNMBAIBJYWIaEE\nAoEDhP0mp8ywJ+aeIBbwHcDKJqezcn83wVo6WStkGJzFTbBu92STqn61Vbc2as61YV0CHcPjxsjI\nIlrLIr6EYuWSpq+RUExf34hpy9ONnJ75zR7hSyi+kdN1OTSyyNBMbJiuZ2RkkaHpW0srVlZZMfuZ\nWvlpJeUMt7JKFzpd23YY9OMF+uS50afnFt9vckrlhRK5UPYNtr7xlL2eQiCwNKiN/YNLvrLHM9kZ\n9kUgj4jcBDwbeEBVv89pF+AtVNuqnQZeoqqfSm0j4HOp61+p6nNS/ZOAW4HHAZ8CXqiqG2d+OWcH\n68bla90wq1ncBL3w+Hm6CXoGS8u610xfy8Brtm2T+Hhs27Jqy1LGloGnvrYuN1I6X45OBj69vcSw\nvXZL110jpgmYGThGTFtnDZo1M7es3GPo0DDz3VooZgn6mcyxaNj0dvoZma7NNZw3ONL7vIuMRZdQ\n+ny6NwPXTml/FnBlet0AvN20PaqqV6fXc0z9m4A3q+qVwLeAl84060AgENhl1F4ofV57hT57Yt6V\nNicu4bnAu9LemB8XkQvrXee9zomxPxP4+VR1C/D/kC/8C4nNpHFvYlm3mvJ0N0EvPL6LdVfl6W6C\npxOztsE3j1qNe8LAfda9vmWCelJ9Sdeu2z2mvb1+koxq5LfTwbA9kTtj3R0iuBsqn7Xbek8DN2ze\nlMcDabXXdbbeMu2h0cutdl73GQ/PfBEYeIL3DG6GZqAGHWzcntPuUGTtROd0nG6RcRC8UB4PfN38\n/2SqOwUcEZETwBbwRlV9P3AR8G3ViQ5R919IhO4dCJwZbODbMunhqpIZ888EIvIE4F3AJVQ/i8dV\n9S3b+jwD+ADwtVT1h6p647Rx57GAe9ShpiaXq+r9IvJk4E9E5HPA307p3x5c5AYqaYbLL7/8TOd6\nRqi1701DEzcNI7Qh6WtdmzAkNt2VAtb2KXmZ1MzbY93QMO8S686CehJb7tK1RyPfm0QzjxNp1ZXK\nTaX9T0d7BwP3n2z7a+A69Bm4JrZt60ZGax4Ok67tsHLI9fCdMO8z1mWtl4mx4bjM3G6/OW5r+qvm\nfbP2oNWkjS+7Fj5HeWQL+Neq+ikROR/4pIh8WFW/uK3fn6rqs/sOOo+fl5PAE8z/LwPuB1DV+u99\nwEeBpwIPAReKyMr2/h5U9biqHlPVYxdffPEcphsIBALdmKcGrqqnaucOVf074EvMQXmYBwO/HXiF\niNwKXAM8oqqnROSxwGlVXReRo8CPAL+uqioiHwFeQOWJ8mKqx4aFxKbx7a61b6t7b+D7eW8kPTzb\n2sz1LJmeAha6vUxq5u2xbmiYdxfrrsZI24VZ32+HbXtMG0BHbYatJd3bYeBdGrg93pO4i9+lurMR\nvq0Gng2V2LKOSwy8KsuwXQfNe+SxcsiZeRdKG1TsCtJ0rc+7ZeXZU0Ri26sO6wbYTHq41cJh+fTw\n3TBQJpviU4FPOM3/WEQ+Q0VqX6mqX5g2Vh83wvcAzwCOishJ4HXAKoCqvgO4g8qF8F4qN8JfSIf+\nQ+A/iMiY6tZ4o3lceBVwq4j8GvBp4J1d8wgEAoGziRn9wI8me1+N46p6fHsnETkP+M/AL6nqdjn5\nU8ATVfU7IvJTwPupvPuK6OOFcn1HuwIvd+r/J/D9hWPuA57Wde69QhguA4HdwbIZNGewNzykqsem\ndRCRVarF+92q+ofb2+2Crqp3iMi/F5GjqvpQacyIxOyADdqpjZfWcGllj01nR50140a47mUY7JBN\nwM8muBM3wczwaSQSK6FsbrUllEwuSX2t7atomPQkFFMWx2gmnptgSUXwvASLEkpq6HAdhMZIiZEM\n8CSUsS+h1MqJWtnEGnp3EJ09DzfDGkPvjS/BWMlWjZx4qHaptd+PzI0wSSxGVlk2g6ZqnvbgTJDc\np98JfElVf7PQ5xLgb5LM/DSqd/+b08aNBTwQCAQKmKMG/iPAC4HPicg9qe7fAJfDRI5+AfCLIrIF\nPApclxSOImIBd+AZLqExXlrDZe462N5z0u5vaI2Ydb1l3XaXnK5kVDtxE+xi3VV9CtQxxsjxltlR\np4NVe/UZ4bPt6RxFO53HsGew6bnfPfH/Y/tODJYDy5odNp6xcnt8dcFq2Js1eO42bB7zQdlDt4U6\ncdUwC87x9+qcGOnNPe8ZNC0rt2wd4DCLjXnmQlHVP8N3ubZ93gq8dZZxYwE3CO07EDh7WAY9vLSZ\nyKIgFnAHnu5dlasPs6R7b2Qa+KHUPnT71mzctj86anTvWZJR1eVNw7A9vbuLdUPDvC3rtuVOXXtk\n6512w8YnbNoL6IEJA89YdxdbL4TKd7HxrO8g/wvbniIcjTxn6IP28TqD7rxHqNl6iXVbe06thx+y\nT6uOHp4H9zTty6KHL3oyq1jAA4FAwIFqbKm2VOhKVlVr3126ty17urctZ7p3QQOvmbfHuqFh3qXg\nnEl4fAfrhoZtZ6zbjFUH6rhMG1y2LWO/b9Nuju9IMdvJxgus2/VOMYPlGnh6yjDeIllKjNTXtmfX\nWDPzFTO+cedYJC6+Mmiz7UzXNvevx8w3nARu0OjhXnBPdfwy6OGSJWpbRBz4BTx070Bg77Gomz+E\nBr5E6EpWVTOMLt276jNs9fXYuN2NfNPZHb4qD7O/4OvdXkg8+L7dJS+TSdlh3QCyJdnfqkNT9Ni2\nIW5Zu8/AC+X6mHl6oRhanrmf129TFkrv+HHbuXjHl+a1y2y8FH5f19v2lXHz4dQMO2Pa4j9h1ve6\n5xte9U3fJcc3HJZDD49d6QOBQGBZodty8ywgYgEPBAKBAsILZcExS7bBWuLoMlyC7yZoy7XB0hou\nrZyS7QrfM5ugJ5tU7dODczyDpSeb2LI1YlqJJDdStgN5cjklFbqMlAUW1JWN0I3Z6WHkrJ/01com\n2S41KZS+1K5Tp72N1SWjcaGvB3enoRLMN3wl5fO2hstMwhs4wWcdBk0vuMfWr3VkK6z6NnLKIhkz\nNYyYgUAgsLwICWXBMcYygX7JqroMl7avNVx6bLtkuLRJdOqyZeWewXLHwTlmLDyGbRl47UZovMBK\nbLzLSFn3dYN7bN8SQ7dwAnky+5PDwC0MEW2SUZm3JSvXwUyWnA0LFs1t09veaoPeJ3Pxp9gb1kg5\nNLvoTO4jm3LBGClrg6Y1YnYZNL3gHmgMmrauj0FzkRg4hBfKQsKG8AYCgcXBIoXXq8YCvvAYmWek\nUeJDI8OGvKCdLt3b1ndp4F26NzQug9lO8Rkb7+cm2MW6q/q2m2DOxtt1g4yNm/IklN6po8DAPfo5\nh0Aed3vNbL9H0+AxcCeoJ3M9NP8Ze48D9rzetDKvzJ2x8VrHty6mdv/NjVoDN6zc08NrLRy69fCu\nZFf58c15j5jj6vfrgsHi7dcTboSBQCCwpFh6DVxEbgKeDTygqt/ntAvwFqpt1U4DL0k7L18NvB24\nABgBr1fV96ZjbgaeDjyShnmJqt6zfezdgtW9x4YPjVJxZOiQZbo1M+/SvaFh4yUvk5rZZwE7Nt2r\n1cBTXy88Hpo9K7ONF2YJzvECdRzWbdsHlmnbsuk76VNi4F6gzyyBPB0M3EIdDTxj0J7enYXKt9vH\n9ttjrzudZFxUvs1Y/nRN+3QvFeuRMko38Miw7pFnS8nq2nq4F9yzvVzr4V3Jro6YPTGPGG+Tkbnw\nUbqG8bar3Gv/D0UYL7gXSp/Z3QxcO6X9WVT7tl0J3EC1aEO1mL9IVb83Hf9bInKhOe6XVfXq9Dpr\ni3cgEAj0hfZ87RX67Il5V9pFuYTnAu9KO0d8XEQuFJFLVXVigVDV+0XkAeBi4NtnOOczxshocSPz\n9k8k20zP9HXnGhsdPuGe7g0N88k8S0x5M9t8Ydg6v2VW9XzHdvd4q3H39O2GgpeJaa9ZdZF1O3q4\nq4vTsOmSn/gs6WTrPiXd22XgJS+TOlmVw7qBCTPPXMMdNj7A3kf9vVQ8qN18wvqfm6euUSrbe8PT\nwzesBu7o4Z5vOPh6eCnZ1Xjy5GCfYO37gSmnJ4dtKXf3XN9dAiPmPJ4PHg983fz/ZKqbIO3vdgj4\nc1P9ehH5rIi8WUQWzXsoEAgEFp6Cz2MB936iJpckIpcCvwf8gurkJ/Y1wPcAPwQ8DnhVcXCRG0Tk\nhIicePDBB+cw3UAgEOgHVen12ivM4ynlJPAE8//LgPsBROQC4I+AX1XVj9cdVPVUKq6LyO8CrywN\nrqrHgeMAx44dm8tv3TiTTawboWR/28dVv3cjK7GYsj2ub7bBLsMlNI/GnuESTGBJIa92Xd8lm1T1\n7XbPYFmUTZz6kpugF+gzi4QijouA2ph4z3WwkDXQk1Ps8LnLYPXX8TzMxs3bz1BOsZkTzec1Gph9\nN1Me8pGxEHoGTS9IrCqnlA1OcA/4Bk17/kzi0/Z3aVSQU2pX3vEsKQLOAhQYl3aLWhDMg4HfDrxI\nKvww8IiqnhKRQ8D7qPTxP7AHJFZee7A8D/j8HOYRCAQC84NS/XL3ee0R+rgRvgd4BnBURE4CrwNW\nAVT1HcAdVC6E91J5nvxCOvRngR8FLhKRl6S62l3w3SJyMRX9uAd42Zyupxesu5IN5KnTP5eZQu0e\n1nYtrI5vGxbt8V7QTpfhsjpvYv6O4RIag2VuuDSsumYRJSa8AzfBLtZtz9EV6JMzcG21W3QbNC1F\nN7WOEdOyq8xIWbsJWiOmYevjvFtWZ1Fq99m4/+QweRoo7EGqTnlk6rJ9UKW6CC+4B7qTXY2HNsAo\nfRe0XQfN92LkfCeqcvtytrsRLgKW3g9cVa/vaFfg5U797wO/XzjmmX0nGAgEAnuGZV/A9yMy1u20\nZ7q2E8iTswpfA5y4UWUuiW3tvEv3hoZFjTI3wbbG7eneYFwD7T6WhUCevm6CJdbtMfcSW5c6LauZ\n68BzOTSf186TWUmrTgwNdF0KLbt1zlvSwCf12tGOCfoRv3OdC8qmrsW6ETp6eK2FAwzNNdZuel5w\njy3nrLv9BFqV0z1ZCHqrvxc5Ky+V07wWju7Oz0ApIk8A3gVcQnULHFfVt2zr4wZFThv3QC3gkcQq\nEFgeLERiq/n9pmwB/zpFqZ8PfFJEPqyqXzR9bFDkNVRBkddMG/RALeA1cs8TW26zipw1T2cVY08v\nL2qA0qrTEvMft9m8Wj28ZuYFVj3Zm9LKw10Jpjq8TIqs26nPx9J2e0kDr9sz3bsHG6+7OkE9lmnb\n4Bt384bsSc08pTjn8th49nRnmb+dl2MHUGffUC20e3q4FjTwQWLotRYOsGo+PO+eLHlcjZ3726L5\nLhW8VLLvSn0pzfu9EImtdNt7fSZDVZ53p1L570TkS1TxMnYBLwVFnmqPWGGxA/0DgUBgTyE9Xxyt\n41XS64biiCJXAE8FPrGtqTMocjsOFAP3rNxZUp3aD9zRvW25lwY+8VhpM/isvYPhQEMEc48DcxEq\nrbps9/eajZcSWDm6c8kLpWbeRdbteJxkrNth49n4jheK1ap3HkpfdbBMWzIvFMO2J98KO1ibjZfY\nT5eXijhztBq31bAnqW3t+92hh3u+4dA84Vmpeew8QZbvWee7UPLz1vZ3aSz+02g9RJ7WYkESW/WX\nUB5S1WNdnUTkPOA/A7+kqn+7vXnWGRyoBTwQCARmwhztqiKySrV4v1tV/9DpUgyKLOFALeATK7yT\nwAosa+6KLisk6NE2c+nSELWggWdRgA5zynXQ6k/Ry8RLGlXaRMHbhMHz3e5g3VW9ttozNr6Z2jO2\nr61yviXbzjTwCfO2/tyZF4rnvlKKmKzTn/bXxQ35zPXujs9GnY2hu/Tw7EnNub88byhbLj0Jevd6\n0cbTkczKS2yVp3ZegMRWdSDPHJA8TN4JfElVf7PQ7XbgFSJyK5Xx8pFp+jccsAU8EAgEZsEcPRt/\nBHgh8DkRqdNn/xvg8uo8U4Mii4gFPBAIBEqYnxfKn+Fr3LaPGxQ5DQdqAR9PHn3bCaxsOX+86wjO\nKRo8nUfMToPR9EffktzSJLBuyybVZNJjeIfhEgqBPF5wTtHI2TZYerKJrbd1Xih9XlegRBMtom0c\nA9AUkJLlRDeyiUlrbeAbMZt6382wnkImm2RGSKdsp+0ZNJ3gHgCGdo71feBP29vfUbsklJLc4hj0\nPZdBL/gKOi+FAAAgAElEQVSn1XfiPGDezwVJbLUg0yjiQC3ggUAg0Bt7nOu7Dw7UAl67JnkJrMB3\nE/TDh6e7Dtpyl5ug5y5YlU39pGAppe1b/S2nXU1/uwyXpuztnJPVZ6x9upugx7ptfV5nBh632/M3\nyc4xuQl2MXCTkElXLCPtclTz2Lg9l3X9S+eyTDtj2KZrnTirxNaT0VULn70470eXYdxj3bZcvmfb\n34uiy+HkabbwBOoktsrt8ouQ2ErmZsTcLRyoBTwQCCwn6rD6sx5SHwx8cTBJHG/rPNeoQnCCl0LT\nItPLnbD7LjfCLj08t4g7jKwr0VMBnTvFZ4E29d92yHt1fBfD9jTwZgKyZcvarhs7Pnj2WjKqa97D\nCQO3T18mzDwjfP3YeMawd/IUg01EZo7PyrWu7btPauk4p13dpz7/nmvqpjPocnh8bS8qhdp7tic/\nzfN5gyPuGGcFi/AgMAX7fgGPBFaBQGBHmKMf+G5h3y/gFpPdr50EVlXZ0e0cBtGVwCo7Z+EG6Epm\n5TKrTpbWVLl6eIdGbusz34YudtlRHpS8VBLztgw7Y+Obo1Y7JQbuxa8P2mKzrPiPI1kyqo1Jqal0\n9HT7FGIDgQYTzxHzeXqeJ5j3foefXW4Xad8HvjdT0+7df8VAHkcP7/LI8lJRVGN5XihmXgvi/rEg\n0yjiQC3ggUAgMBP2wwIuIjcBzwYeUNXvc9qFQiJyEXkx8Kup66+p6i2p/geBm4FzqCKQ/u/kyD5X\nZNun1Qy8wEBGLttus4auBFbVeR0/8C4NfAY/cIuGxTlszLRLF8ujmxH6Hi0FPbzua1h3Xh4X68Aw\n8E0z6KjAxj2smLj5mo2bvdGsXu4lnvI2e4aGxWcbYVg/7foUPd5vb+PmzOO8o93zRirdB5PmwpOe\nG5tQ8DLxnlY9e1LJD9xLbGW9UEqJrSJ9ao6+78fNwLVT2m0i8huoEpEjIo+j2kPzGuBpwOtE5LHp\nmLenvvVx08YPBAKBsw7Rfq+9Qq8FXFXvAh6e0mWSiFxVPw5cmHae/0ngw6r6sKp+C/gwcG1qu0BV\nP5ZY97uodqcPBAKBxYBSPRb0ee0R5qWBlxKRT6s/6dTPHQPzGzV0UhEMnJ/PYiCPt2NPV6BDh0TS\nK5Cn05BV/Sk/preNWzsfq11XlFMme16266AJkR8YiUS88paRUDY3m/LIMWhaN8JRc3tLklMyeWLo\nf/Hq+oGRc3RopBfHkJt/eNPf7+ysPT/bkhzTZez2s1pOd13tk6Peb28bLL1UFFW750Zo52UcDUxm\nwrNutFtwDXxekpL3TdAd1LcHFrmh3uXiwQcfPIMpBgKBwGxYdAllXj9opUTkJ4FnbKv/aKq/zOnf\ngqoeB44DHDt2bOa3ykZuDe6/HMjz/wwNRRkmSjU01GrofDrDHj/LbiBPoVzDDZ/HZ05d7mNdLK7L\nSFlu13ZdhxthkYHXZesmaA2W9WdjjZUbhoFvGctiPZYJlc9dDqtbPQv02fSDfiTtI2l36ckCaSZP\nFubwMzQal/p6n0f+2TvM3wvyMuUuY3mRgbtBbyWD/vS0FB7s9yp7cpY9NF0eEAZ+O/AiqfDDNInI\nPwT8UxF5bDJe/lPgQ6nt70Tkh5MHy4uAD8xpLoFAIDAfaM/XHqGvG+F7qJj0URE5SeVZsgpMTUSu\nqg+LyL8F7k5D3aiqtTH0F2ncCD+YXruKYWJZq4YJ2F/9ujw0bkteeWCol9XQ8/rUt/DplupduAEa\nTdl7hHNd/3owwp1oskV3ucl247avttolY7eOa6DNOGYYuG5sNOVRcjlcbfLCZomeaoZ9xLoGGo17\n1WrzqX7V7C3pPWXM4z3q+X6XdW/L/LV1/CyBPJ4GblHSuz0MOp5mve+dHdHaqwZ75Dy41/JIH/Ra\nwFX1+o52pZCIXFVvAm5y6k8ALZ/yQCAQWBjsoYdJHxyoSMz6l3xoAzgyBl0zAZ9VTzRyyx4KbLxm\nG9n45jhx2sWW7cQnFNpUZbHuzA8O45tFs+3cs1KcyXYF5IwbXVyNR4IaNj5ObHxgPVOsrn2OkxDJ\nztWGxTubO0hOW1OdGd9JXJU9WRTTwbbrfDYvbgeXmc/AGt3736lrl+snzPb3A8zTahaEUyinca1t\namBu6u+M17jgf/+rvpc0V+wLBh4IBAIHErGALw7qX3X76+5p3B6TAFhNceKZ1p2x8Tbbtn1XBm3W\nkbHujGG3mbmtU1fkNnpnwWHFrXPKpXZn97bdT9hmWfWowNa1XS/Gd9tl/jvFDr7UM71H3nuffd5m\n3IFT33kfTW8vsm662LrHqv2n1fw7VtuezPdynp/XTrFfNPBAIBA4kIgFPBAIBJYT0mGe2WscqAW8\nDggYmufZ3HVJs7/VMfYRsjZi+o+CuWGmdjmcbhAqtbvSygyyh2fkLO3R6MolHecqtxsZx9lR3YVN\n5YcJ5JlslmgyFK40t6wOGyPm4HBlpJRVc0vboB4rp3hz7Xhkz9rr3X0yKcP2dY7pkKRm+WyLckoq\nFw3cqTyTLGLaV0xid9/l1roGOt+VYt+2G+FeuQ7uFnpkdH0GVSzM11LVH6rqjV3jHqgFPBAIBGbC\n/CSUm4G3UiXuK+FPVfXZswx6oBbwlUvuBZqQetjmujRxI/RZtesaWAzq8VwS22XPiFSVadWLMVh5\nRkTJmJkdoG3knIUR5ueq2aeZi2WfWV5syY5pYbJPpf0QTPDMVmLYlj2vGDZ+5HBTX7v22b5DJx+4\nQXZeU1anb244bNd1PaUUjb59+3YdD65PonsfFe6zieG9cM8Onfu+9F0YTtp9g39+XH2MfTLeX0ZM\nVb1LRK6Yz2gN9tdzSiAQCMwT2vM1H/xjEfmMiHxQRL63zwEHioHXsL/0Vg+f6HpFdydP12vrfrZ+\np3rjwNE5cyI73Y3QUoeGNZujZ9Bcs6jpDs1Ws30gdXp70qjFMt5Vw5pr7dtG1pjjM7btpZO1O/LU\nerjVvY2enlNRyf9un3cqZ3UdrpZdTzydfUuEtNM+oe3mDrtL8QnTuT89d0Dbt2Qvcr8ri5LAyqL/\n4nxURE6Y/x9Pifj64lPAE1X1OyLyU8D7qTa6mYoDuYAHAoFAF4SZvFAeUtVjOz2Xqv6tKd8hIv9e\nRI6q6kPTjjuQC7j9pe/yQlk1XhFegp6uxFarg5Hf7uiNpQCL+rhRwfugS0eVDs22S3PtDOTxWLep\nHxt9WVZM35RnYmxYd8a76tS1ts6ydaOHTzxWzFyyvvVTiGX4Kyb9qalXR5v3dP68zrEv7FADt+hm\n6O37p2xXmR7I0x1K79iDutJOdCSwqsao66wGvgAM/CwG8ojIJcDfqKqKyNOo3pZvdh13IBfwQCAQ\n6IU5LeA9Mrq+APhFEdkCHgWu67PJ+4FcwLNQeiexVW559xL0FFiFw8ZLDMXzQin7gU/3WNkRi7Ow\n9TW7LGng7c3ds1xU2SNn2m9BDese2+xuiQF7O8IDDNxt0kZu5zpxlOZuFQ2SXq4l1m1Sx45TH/vk\nkLFxqfs1w9v3qD7OtR0Uyjv1Usk/u7bNwWPbM8UmFOwyKymtREnXHnQls8q+Y3V7M9m9TGCVYX5e\nKF0ZXd9K5WY4Ew7kAh4IBAJ9ELlQAoFAYFkRC/jiwbooDTI3wg43Qcd1qiszYWegzyyBPF2GrGIg\nT/uYPODGlEdOnRl2XNcbKcTuc6kjaffNPB7tLuX1e+Mblcfp9hSTxVHGduLmvO2htrkM1vtcNh08\n2QRgvCpOe4cboX2/HJnJa8/qi3JLWxbJXURNdacRc3p7lxHTc5kt3d/ed6XkclgbLxciA6GFzuSF\nsifoZeoVkWtF5Msicq+IvNppf6KI3CkinxWRj4rIZan+x0TkHvNaE5HnpbabReRrpu3q+V5aIBAI\nnCHObiDPzOhk4CIyBN4G/BOq3eTvFpHbVfWLpttvAO9S1VtE5JnAG4AXqupHgKvTOI+j2jPzv5vj\nfllVb5vPpfRHFjCQuS7VddaIM90wUwpUWJnkDp8hkMcyGMs6ZZj++sypYXzmTrJlrdtNlWHQNpV2\n3SerG/Vvt4a95nJ9ZjVM7/g4N11OSpIYrnU9rHeMz8cvGDHtE8fENdAwcMOga9YNMD6U5mWNr7a8\nWo/ZjJ8bPOvxzfkLTzxjr6/D3N2837BNpPXYelPsm96hbHh38n0XA9m6gt7aboQL4Tq4DYuugfd5\nx54G3Kuq96nqBnAr8Nxtfa4C7kzljzjtULnJfFBVT+90soFAIHBWsewMHHg88HXz/5PANdv6fAZ4\nPvAW4KeB80XkIlW1jujXAb+57bjXi8hrqRb/V6vq+iyT3ykGl3ylKTuJrVZLup0TnFAMdJgwkP4u\nW5Z1Z3p6qh/ZRE+GYU92ch/Y0HGrD9fsE1Pn69Yuw3b0cNtu2Wt+N0v2p4SBWFZs3qN613qrt5u9\nK/O9Ix2XQ4+BW9ZtWbPDtj3WXZXrdjt+u+wx7e31nlumfZLygobsZ5vdB+m9GwwLdpd0H3kJrGy5\nnMCq7TLrBe/Y+q4EVtVxkvounga+6EbMPgzce1e3X9YrgaeLyKeBpwN/zcQLGETkUuD7gQ+ZY14D\nfA/wQ8DjgFe5Jxe5QUROiMiJBx98sMd0A4FA4MwhVBJKn9deoQ8DPwk8wfz/MuB+20FV7wd+BkBE\nzgOer6qPmC4/C7xPVTfNMadScV1EfpfqR6CFlBDmOMCxY8fm/lZ5ia1KWl1Xkvp6z0xo2IZNgm/D\n6g8NttLfhnptGYa9aRI1jRLd3TL7QQ4te6wZtmXVNsglsdaiBp7Vp78lzbY+RfGTKLFxr71dJfa6\naga+ZVhmprGb+vrJINN/28E3mnmTmKGGbWY+PmRZOa1ypps77V4AVDW+Oa8Xlu+xccvKHdYNDRsf\nmLqhYePDVL86NBszmKe+es/WWfZ8ze5577vSkcCqOi5ttLIoCawM9oMGfjdwpYg8SUQOUUkht9sO\nInJUZPLuvwa4adsY1wPv2XbMpemvAM8DPj/79AOBQGAXsewauKpuicgrqOSPIXCTqn5BRG4ETqjq\n7VQx/m+QyjXiLuDl9fEpifkTgP+xbeh3i8jFVPzrHuBlZ3w1O4C1fK/WWpz52bUMoy4fGTRbeR1p\nHirYNNRpPfXJ67aavol5HzJsaMvQsM1xUz9Kvs8rhk2NjT90rXlaLTvfTiwx8HGJfbb18nHhpqwP\ny9xji9JlejLI2tsaefa0sGXK6a0b2I0XMtY9XTP12LgX8g6gWVh8W+POyo4G7jLwQruvl6vfPnHR\nmK57Q3MfWAa+Yu6vmmFnT4JD+1Q4yv4CHDb37Ir9LqT6/Am06Tt0vVTanidVfa2BLx4DX3QNvFcg\nj6reAdyxre61pnwb4LoDqupfUBlCt9c/c5aJBgKBwFnFHuvbfXAgIzEDgUCgF2IBX2wclsY/bDNF\npBwRI4uYx8a6flOGps4cbwySa+pJKM3bvZX6bhSMmBvmMXaU5JAtI5uMxlZOSY/0mRTSNnpJwchp\npZVJWu2mOZdL6Nde6jvCyjhpXkb6MW8t9VtgA4VKKRU9puRl7SsG3zhGxExucQyWmWuhlT1W8n7b\n+7qBPJlsYi6mlr86DJcAg1S2hksru9XGy1VHNgE4NKwkECubHB425Uw6THJJVpe1b6S/ts6cyxiY\nV5P57FFd5zGX/iWLhEUPpT/wC3ggEAiUEBLKgsMG9Rw+9WQAjphdeNbMJ1izjjXLyg3rWDN7N9bM\nY90wdMtsajZuGdCGcemyxqXaiGkZ/si2p/ByG8CRGzTTNVgGbm5MSzIaYtROMQBZDivnGB+WCdsA\njtp1z7ydfmIsM1cvctzWd+U8L4W3e2y8lIyqZtMe687aC4bLjI2vaPa36ttm4FII3vGCdqzh0rr+\n1cbLFXufmftvJdHNkuHysLnX6/LhjGE7DN0YNlfNXA6bRy37FLxQWIJAngO/gAcCgUARsYAvD1ZT\nlMhhNbqfo4fnddP18LWim2F1ri3Dqst6eFVvtcuRoZpbiYWNTV2mh0/otp80yrtHc+mvzcb9kXw9\nPCPFTueBZeBOWL+XtKpdn6oKiZwmSa76pNT1GLgTiOOxbujhRmjY9ni1rXGz4pSt7p25DraDdjzd\n25Y93Rsa5t2lewMc8jRwh40fyWxIYsrmu6CbC6d9QxOJuciIBTwQCAQKkFJAxIIgFnCDWg+vtXDI\n9fDNpBFaJrIpPlvZSPQtY+uGYR8eVJTNMvDcS6UdbDEyXiiW+deaZ7YFqmGENakdFbiydoQwe0E7\nNvFQFxu3niWa6d2pzrSL057r3sZjpeO75XqhFBh4FurewcDVY+AZw/bq2qy7GiuVVwsMvA7OWTVh\n6Cs2PN56nCQvE1OXp29wGPjAYeDS1rpb5QnDbuoOZWy7HmvJdG+L0MADgUBgeRESyhLi8KX3NWWT\nbnYzfZpW19uUtu8rNLr1eqaBN293HWq/ZZJWHR43bGjLhMIfSqJrVmd0+k44nhnjguuIdoQzjyeD\n2bBon43XxN760mYMe+S0m9NPvjyFL1HJI6XpYJrFqbOHu5sozNDuJrsyTLvkZVL3yXRv41mSyiur\nxrPEatwr7Sc1y8pXnVB6q3vb1Mm19m1Zu33azDTuQZuBez7fh5ZM925hwRfwBUw+EAgEAouBeaWT\nFZGbROQBEXGT9kmF307bVn5WRH6gz/xiAQ8EAoES5peN8Gbg2intzwKuTK8bgLf3GTQklA4cNgmo\nN6mNmFZCsY+YTXkjPU6umcfKDWOkPJyeuTfH1rBpzmWez48YmcXDwKEA3Rt8N2OOHee//lJK1Xty\nXhOp40oojsGyJLFMht1pII8noVBon0VCccLy80CdjuAcz2DpyCbQSCdWNjm0atz5jERyeNVxAzTl\nxojZNlxCY5gsGS5XHTnFC96pxtL0d8kMlxY6v1B6Vb0rZWYt4blU+wor8HERuVBELjX7JrgIBh4I\nBAIOzvKOPN7Wla0srtsRDLwD1qC5deqJAKybn2Uv2RXARmIe1rUwM2ImNrJpGNA5w8YIOjqb+wMa\ny6FHODrZuKH7Wcj3aNJhUpcF7TgMHcvQuxh4Psk2uoyY9i12Quy7A33Ubx+2GXhmpDQugXWovMe6\noWHeXawbGuZ97ophxYaBn7tS3V+lZFV1fZfh0tbnroPtoJ2lNFxaaO/V+aiInDD/P552E+uLPltX\nthALeCAQCBQwA7t+SFWPncGpOreu9BAL+AyoNbzDhmlsOMEL0CS8ygN5rMa9DvRj2kPnh3jgiHOe\nFl6q79LISzvuTNh4ph9b1m3ZeCpnCapo9R14urcp92HdXRq4e3gXA+/YJcfbPb4ay3ENdFg3wDDV\nD4074Iop126Ch6274Ip5anPYds7Am/JjVqp77lxTd95wrek7aGvg3aHybd27qk9pKZZN97Y4u4E8\ntwOvEJFbgWuAR7r0b+ipgYvItSLy5eTi8mqn/Ykicmdyf/moiFxm2kYick963W7qnyQinxCRr4rI\ne9N+m4FAILAwkHG/V+c4Iu8BPgb8HyJyUkReKiIvE5F6K8k7gPuAe4H/CPzzPvPrZOAiMgTeBvwT\nKpp/t4jcrqpfNN1+g8qCeouIPBN4A/DC1Paoql7tDP0m4M2qequIvAN4KT1dZ/YKK5fcC8CRpIVD\nrodbDfDcQaU3jrIgl+m/lx7TBp9BD+dkOekDVxe3eWFtjlnDpie7ytt2J6w+Y+Ve2Pw8vVCydm23\nw4TWlDZZmLBtJ+2r7SuF9mEWFp9SvDqsGxrm3cW6oWHeHuuGhnlb1m3L9T17/uDRZnwTnJbr4bVe\n7ierqjdpWErd22COXijXd7QrZi/hvujDwJ8G3Kuq96nqBnArlcuLxVXAnan8Eac9Q9qJ/pk0+2je\nQrUzfSAQCCwGlMqI2ee1R+ijgXvuLdds6/MZ4PnAW4CfBs4XkYtU9ZvAkWSd3QLeqKrvBy4Cvq06\niQfv5TKzKLC63rnmJ3pkrPuME3Mp/EQOHF477Pq5t5/WVqG+Ht9h6IMZGH4JNbscD6xobBm4SQc7\n8jTwtp+4DUN3GXYH687qZ/D97mLjme92to26ttoz7xtpM/As7aujd3usG+DIatKlC77dVu8+N7Ht\nczKN2zLwjVTXZt3QMO8LbLs0x18wMHq5k6zqiImZWGrt22A/5ELp497ySuCtIvIS4C7gr2mWmMtV\n9X4ReTLwJyLyOeBve4xZnVzkBqrIJC6//HKvSyAQCOwOFnwB7yOhdLq3qOr9qvozqvpU4FdS3SN1\nW/p7H/BR4KnAQ8CFIpOf7KLLjKoeV9Vjqnrs4osv7ntdgUAgcEY4y4E8O0IfBn43cKWIPImKWV8H\n/LztICJHgYdVdQy8Brgp1T8WOK2q66nPjwC/rqoqIh8BXkClqb8Y+MCcrmnXURszAc77xlOahiwx\ndnoAGW+YuqZYMlhOQ0liGYx2d+tsK7HUe0eORkZyMEbKzLhZZ08008v26pxILOb4TBZpWybtl6VT\nenSNmOq2e+VcQmnLJfnOOM1F1tJQXtf0tXtWHkpBOzY4p5ZNoE9wTiNxnDMxUrZlk6q+kkDOH1gJ\nxUgkqb0km5xv5JZaOjzf5LM/x8gmIx1nQXBLCdWF39Chk4EnnfoVwIeALwH/SVW/ICI3ishzUrdn\nAF8Wka8Afx94far/h8AJEfkMlXHzjcZ75VXAvxKRe6k08XfO6ZoCgUBgPtCerz1Cr0AeVb2Dyk/R\n1r3WlG+j8Sixff4n8P2FMe+j8nBZanSx8aGNUimwcQ9Dx8jpBe/0gWvQ7HjuE9O+NRqYcsW4bHIl\nu1PQ2DDscWLpGevOGHp7m5ycgdNqLxk0J30KDNs3aPp9J9tnWgYubbYtzn6U0LDtfLcck6zKsPGa\neXusG6xroM+6zzMM+5yJkdIy8KZcM2+PdVftlRHzMWINm23WXdVX98F528I3lp51b8N+MGIGAoHA\nwYOSeVAtImIBnyM8Nj7IWHfbzdCyNItOl0LvGDfkZjbUzHvFpLm1+3aOEmO0aXBHlqEb98JxStA0\nHlmG7rB1j0lbZN+hHmzc6drEmJRYd7teCjvB12x74NRB85la1r0yaLdDs2OOx7qrcnWfHMlcA9us\nu6qvQ+XbrBvg/MS2HzOw7U3QTs28z89cC5u5nmsSU1nmvd9Yd4bFXr9jAQ8EAoESQkI5oKjZ+Hnf\n+AdN5bhhQzUbH2R7W5r2QorVyeE9E1x1HbMdK2mMDcOwNywDT3HkK8bzxbLuTbP5xDh5l9j2kdnX\ns/Ze0YIGPqnv0shNX49JV/V1oR1wk7UbZF4m0mbb1pvEsu16V/hhYXd4d59K016zbmiYdxfrhoZh\nW437fKNx18zbsu7zTd/HpFB5y7rPN8E552wLztnXzDth0b1QYgEPBAIBD3vsYdIHsYDvMgaXfGVS\n9tm4YeADn40PxrVLi+k6S9h9B1bMWDXz3hg3A2wZ1jxpN6zcsm7LzGvvFHu89WipWfO4g4FnDJ12\ne9ZQSCE7CW936trl6q/HuqFh1quZl4lh2IlNW93bMmzr831o0tfWNfdBzbyzpFRWox62fbrPdzxL\nwDLwNuuu6pNv9wFn3TWqQJ7FXsFjAQ8EAoESdjdG7owRC3ggEAgUEAw8MIErpxjD5qAgp0zC7rNQ\n/RlO7HzK9vF/fWT26kzSyaaa/T2NnLKR+mayysgYPI2cspnqrcvhppFevO+G3e2+r8SyvVzDk0is\nsXJQkFBqY6/tO3TcAFc7ZRGTK964AVrJqnYfXDF5tQ9n+6RWx5Vkk/OHjUTi5fPOXQar8gUmUOdc\nY6itpZPzBoexsO6xBwqhgQcCgcCyYvFzocQCvkeo2bg1bA61YUuMN03nmp3Z9qZYCgaatFPvu9jc\njGvjhuWtG6PVZtqGZn3cZuUA62lfz63MzdAwdMf90NZZ5j5h2HbXog5WXWofO309hl1k3S4D99s9\n17+cgW+12i2rXnHqbfuq3eVm4DHwNusGk8974Of7rpm3x7ohZ94HlnVvR0gogUAgsITQ+W2ptluI\nBXyPYXXxx9gGs+9mzcaHmZuhQX2TFXTxOix/Nduzs2HFa9q4iq2Pq/LauKnbNJtD1mzcsnKrkVs9\nvWbmloGPHdac1Tls3Dtme9kL5Bk4Za8O8iCnruRfNbM+ZMLfM13bYdU2VP6wcd2rdfRsJ3ixbDzt\nPWnaPdYNDfP2WHfVNx1fYN0QzLuFYOCBQCCwpFjs9TsW8EVFtpN3YuPDLOy+zcaH6j/v1buJrw0a\nVm0Z9hHDwNdS4Ma5RtdeU6uHtxn6lmHop805ama+WWLgeAx70Opb0si9cpFh1wy8wLS9wKgSQ1+Z\nsGbLlNueJZZp276WTdfMO9O9s93fUzpZw6Rt33zDhZSsyjD4881TWZ2MKlh3f8h4sTWUWMADgUDA\ngxKBPIEzx4SNW1180GbjA6PXWUa4lpjwmsO0t9fXzNsy7MOmfTPpq6fHTTrRTaOBW9a5no7btBs+\nGIY96mLgqX3UwdBtXwuPbVvf7VJyr5qNZ6H0tNl6pnE7DDvXtY3u7XiZ5O3tsTJWLr5eXjNvy7rP\nM3r3uYPmMwvW3Q1B5xrIIyLXAm+hSorxO6r6xm3tLwH+HdXWlQBvVdXfmTZmr3AQEblWRL4sIveK\nyKud9ieKyJ0i8lkR+aiIXJbqrxaRj4nIF1Lbz5ljbhaRr4nIPel1dZ+5BAKBwFmDar9XB0RkCLwN\neBZwFXC9iFzldH2vql6dXlMXb+ixgPc88W8A71LVfwTcCLwh1Z8GXqSq3wtcC/yWiFxojvtlM9l7\nuuYSCAQCZxVzWsCpto+8V1XvU9UNqs3cn3um0+sjoUxODCAi9Ym/aPpcBfzLVP4I8H4AVZ34yKnq\n/SLyAHAx8O0znfhBhDVsDk49qWlIssaqNo/ma8aguZYerTd1w7RbI2VbTrESy6bT1z7GW+Po+tga\nSqvz1jvZQ5NPHBoJZERJFhmkY0qGy7YcY+HJHquFoKeBETtr6WTo1IHvlunJJZmx0rxfh1wJxeQA\n91eaG9EAAAoOSURBVNwIraySGTxNuH6K/T8vcxM8kl+ncVsNdGA2DfyoiJww/z+uqsfN/x8PfN38\n/yRwjTPO80XkR4GvAP9SVb/u9Jmgj4Tinfjx2/p8Bnh+Kv80cL6IXGQ7iMjTgEPAn5vq1ydp5c0i\nkpvGA4FAYI8h43GvF/CQqh4zr+Pbh3KG307d/wtwRVIy/hi4pWt+fRh4nxO/EnhrEuHvohLhJ5RB\nRC4Ffg94seqEGr4G+AbVon4ceBWV/JKfXOQG4AaAyy+/vMd0DwbOufRrk/Lg1JMBOFcsA2/K6+kt\nX1O/fc24J66lJFab4rsRrmllCCsZQW19HSyUM2zPiOkz6bp+5Bg2W/UdofSWLdew+45aN8KauXt1\ntt4ydI9tHykYMY84bLxkmKzZ9mFzLUdMlq1Vs0/lkVQ+ZxsXCta9U/SWR/rgJPAE8//LgPuzs6l+\n0/z3PwJv6hq0DwPvc+L7VfVnVPWpwK+kukcAROQC4I+AX1XVj5tjTmmFdeB3qaSaFlT1eP2rdvHF\nF/eYbiAQCMwByjw18LuBK0XkSSJyCLgOuN12SES3xnOAL3UN2oeBT05MxayvA35+24mPAg8ndv0a\n4KZUfwh4H5WB8w+2T1ZVT4mIAM8DPt9jLgEH9S4plncd/sZTJuX1xKoPG9Z9rtXI1br+baU6G2pv\nwuOTjl5k4IO2dj5ydO2qfpDqfFZdM3fLrrvYvEUXa87dBA3brt0IaeveVX0aK2PFRsP2XAOxurdl\n2LXGbfbPpM22j4h11bTlfMecYNtzxpz8wFV1S0ReAXyIyo3wJlX9gojcCJxQ1duBfyEiz6FSLx4G\nXtI1bucC3vPEzwDeIFUiiruAl6fDfxb4UeCiJK8AvCR5nLxbRC6mkmjuAV7W430IBAKBs4Z5+oGr\n6h3AHdvqXmvKr6EiwL3RK5Cnx4lvA25zjvt94PcLYz5zlokGZoMN1Kg/5HNM6tp1w7qPZBp40lxN\n3blYvXyQ/ppjTOpby8YngTgO667a214mHsPOj5/O5i1sQEyNYaaL+8nBhg7DHjgM3bJ2LxS+5Dmy\nmjF3TX+b+R+mwLYP0H6UC4NIZhUIBAJLCFUYzUlD2SXEAn6AYPXRc0y9La8nj5Z1w7DXaXuveH7m\nkPua+xp2W+/OmHRBD5+Mz9BtHzv2eMuaD6U5lsLnh54XisO6s/aChn5k4lnS9tEGOGzYdu05smKu\nC4JtLwyCgQcCgcCSIhbwQCAQWEIoEHtiBpYJnktiLatAEyzkBQoBbJj6ujYPzmnGHU2MnH6ovOca\naA2amzrdiGlD1r3weIuhk7nQ1uXtTp0Zq5ZLvCAbaLv+RWbARYVCIcf+oiAW8EAgEPCghBEzsPyw\nBrWamXuBQgAjoxmOE0Md0a6zfbM6x8g4MlX261Ri9jUGhsA3hkkfw6yvtPoOjRFykNqHtOugYd4R\nZLMPEBp4IBAILCliAQ/sR3iBQn0wNsFE48SnR0ZnHGdsvW4vMPgCs69hWXHDqk1dxqoHreOG4vP1\nrG+w6n2MuSaz2hXEAh4IBAIeFIhNjQOBBpax1jx2pzehx+azc21TvIMtB2ZGMPBAIBBYRkQofSCw\na/DYfCAwNyho+IEHAoHAkiIiMQOBQGBJERp4IBAILCFUwwslEAgElhYLzsB72X5E5FoR+bKI3Csi\nr3banygid4rIZ0XkoyJymWl7sYh8Nb1ebOp/UEQ+l8b87bQ3ZiAQCCwIFB2Ner32Cp0LuIgMgbcB\nzwKuAq4Xkau2dfsNqo2L/xFwI/CGdOzjgNcB11DtOv86EXlsOubtwA3Alel17RlfTSAQCMwLdTrZ\nPq89Qh8G/jTgXlW9T1U3gFuB527rcxVwZyp/xLT/JPBhVX1YVb8FfBi4VkQuBS5Q1Y+pqgLvotqZ\nPhAIBBYHOu732iP0WcAfD3zd/P9kqrP4DPD8VP5p4HwRuWjKsY9P5WljBgKBwJ5BAR1rr9deoc8C\n7mnT22f8SuDpIvJp4OnAXwNbU47tM2Z1cpEbROSEiJx48MEHe0w3EAgE5gDVfcHATwJPMP+/DLjf\ndlDV+1X1Z1T1qcCvpLpHphx7MpWLY5qxj6vqMVU9dvHFF/eYbiAQCMwHi27EFO1wkxGRFeArwI9T\nMeu7gZ9X1S+YPkeBh1V1LCKvB0aq+tpkxPwk8AOp66eAH1TVh0XkbuD/Aj4B3AH8v6p6R8dcHgT+\ncgfXuRs4Cjy015OYI/bb9cD+u6a4ntnwRFXdMesTkf9GNcc+eEhVz7ojRqcfuKpuicgrgA8BQ+Am\nVf2CiNwInFDV24FnAG8QEQXuAl6ejn1YRP4t1aIPcKOqPpzKvwjcDJwDfDC9uuayMBRcRE6o6rG9\nnse8sN+uB/bfNcX1nF3sxYI8KzoZeMDHot98s2K/XQ/sv2uK6wlsRyRxCwQCgSVFLOA7x/G9nsCc\nsd+uB/bfNcX1BDKEhBIIBAJLimDggUAgsKSIBbwnRORxIvLhlJTrwyani+1ztYh8TES+kBJ7/dxe\nzLUP+lxP6vffROTbIvJfz/Yc+6BHorXDIvLe1P4JEbni7M9yNvS4ph8VkU+JyJaIvGAv5jgLelzP\nvxKRL6bvzJ0i8sS9mOcyIhbw/ng1cKeqXkmV96V1IwKngRep6vdSJef6LRG58CzOcRb0uR6Afwe8\n8KzNagb0TLT2UuBbqvoU4M3Am87uLGdDz2v6K+AlwP93dmc3O3pez6eBYykZ3m3Ar5/dWS4vYgHv\nj+cCt6TyLTjJt1T1K6r61VS+H3gAWBjf9W3ovB4AVb0T+LuzNakZ0SfRmr3O24AfX/DUxZ3XpKp/\noaqfBRZ7t4EKfa7nI6p6Ov334+RR2oEpiAW8P/6+qp4CSH//t2mdReRpwCHgz8/C3HaCma5nQdEn\n0dqkj6puAY8AF52V2e0Mfa5pmTDr9byUHkF9gQqxI4+BiPwxcInT9CszjnMp8HvAi3UPt7We1/Us\nMPokReudOG1BsGzz7cIsiev+GXCMKiFeoAdiATdQ1Z8otYnI34jIpap6Ki3QDxT6XQD8EfCrqvrx\nXZpqL8zjehYcnYnWTJ+TKa/P3wMeZnHR55qWCb2uR0R+gopYPF1V18/S3JYeIaH0x+1AvSXci4EP\nbO8gIoeA91HtTvQHZ3FuO0Hn9SwB7gauFJEnpff+OqrrsrDX+QLgT3Sxgx/6XNMyofN6ROSpwH8A\nnqOqy0gk9g6qGq8eLyrd9E7gq+nv41L9MeB3UvmfAZvAPeZ19V7PfafXk/7/p8CDwKNUbOon93ru\n267jp6iyZf458Cup7kaqxQDgCPAHwL3A/wKevNdznsM1/VD6LL4LfBP4wl7P+Qyv54+BvzHfmdv3\nes7L8opIzEAgEFhShIQSCAQCS4pYwAOBQGBJEQt4IBAILCliAQ8EAoElRSzggUAgsKSIBTwQCASW\nFLGABwKBwJIiFvBAIBBYUvz/vG9CPvbnRxAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x0,Gamma,g,r=m.mncontour_grid('x0','Gamma',nsigma=3)\n",
"pcolormesh(x0,Gamma,g)\n",
"colorbar()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Теперь контуры постоянной высоты $\\chi^2$ - уже не симметричные эллипсы с центром в оптимальной точке, а какие-то сложные кривые. Ошибки положения и ширины резонанса довольно-таки независимы.\n",
"\n",
"Нарисуем на одном графике экспериментальные точки, наш фит (сплошная линия) и истинную теоретическую кривую (пунктир)."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8zvX/x/HHawdsxpbzeZOc5bgcKySFvkhRNKVaiJRS\n4ZuKHPqFiiLncymEpCh9FVEoIymJ5Djn48TMTu/fH9d8v2ttdm27rn2u63O97rfbbrddn332uZ65\nbc8+e38+7/dHjDEopZSyFz+rAyillHI9LXellLIhLXellLIhLXellLIhLXellLIhLXellLIhLXel\nlLIhLXellLIhLXellLKhAKveuESJEiYiIsKqt1dKKa+0bdu2M8aYktntZ1m5R0REEBMTY9XbK6WU\nVxKRQ87sp8MySillQ1ruSillQ1ruSillQ1ruSillQ1ruSillQ1ruSillQ1ruSillQ1ruSillQ1ru\nSrlCq1aOD6U8hJa7UkrZkJa7UkrZkJa7UkrZkJa7UkrZkJa7UkrZkJa7UkrZkJa7UkrZkJa7UkrZ\nkJa7UkrZkJa7si+dNap8mJa7UunExcGOHZCcbHUSpfIm23IXkTkickpEfs3i6yIi74rIPhHZKSIN\nXR9TKff54w949FGoUQPCwqBBAyhfHp5+Gn74wep0SuWOM2fu84B21/l6e6Bq2kcfYGreYymVP5Ys\ngUaN4JNPoHp1GD0a5s+H22+HmTOhaVN4/nlITbU6qVI5k225G2M2AOeus0tnYIFx2AKEiUhZVwVU\nyh0SEx1n5g8+CHXqwK+/wooVho5P7ETqvc9rU37jxAnDU0/B229DVBRcvZrFwRYuhC1b4NtvISLC\n8VopiwW44BjlgSPpXsembTuecUcR6YPj7J5KlSq54K2VyjljoH9/mD0bBg2CN96Aadsn8fqS1zlx\n6cR/96tarCq73/2dihX9GDoUTp6ElSshJCTdwRYuhD59/tf8hw45XoPj/whKWcQV5S6ZbDOZ7WiM\nmQHMAIiMjMx0H6XcbcYMR7EPG+YYhgEoFlSM1hGtaXtjWxqWbcjWY1s5dfkU/n5+DBkCgSUP8GLv\nyvTvDwsWpDvYsGEQH//3N4iPd2zXclcWckW5xwIV072uABxzwXGVcrktWxzDMXe3M4TcPZ5XvvmL\nUXeMIqpuFFF1/1fG9crU++/ny35bxpCj3Wn36kTeH9Gfu++W//X24cOZv1FW25XKJ664FXIl8Eja\nXTNNgThjzD+GZJSy2smTcP/9ULEiNBg4in9/M4S95/aSaq5/tbTNjW1od1M7VjOAyj3eoV8/+PPP\ntC9mNbyow47KYs7cCvkRsBmoLiKxIhItIk+KyJNpu6wG9gP7gJlAf7elVSoPnnsOzp6F56d+wdgf\nRtCzbk8W3b8IP7n+r0FYoTA+7f4pXWp04XCNFzAVN/LQQ5CUBIwZA8HBf/+G4GDHdqUsJMZYM/Qd\nGRlpYmJiLHlv5SOuzU5dv54NG6BlS3j61QN8ENyIiqEV2Ry9meDA4OseIr24hDgaz2rMqbiLXBi1\nh7EjizJ4MI6LqtHRjouq4eGOYtfxduUmIrLNGBOZ3X6uGHNXyqMlJzvG2StVguZddrBkbQGWP7A8\nR8UOEFoolOUPLGfHiR18tLkoY8bA449Diagox03xAOvXu/4/QKlc0OUHlO3NmAE7d8Jbb0H3+l34\n85k/qVKsSq6OVbtUbaLqRjF+PFy6Gs/IkS4Oq5SLaLkrWzuTFMrLL0PTe/aSVH0RxhgKFyic5+P+\nZpZRYEglpiw8zN69LgiqlItpuSt7Sps1WnzTZ/x0Ppx2pbrx5Kq+nL1y1iWHjywXiRSIR+56kSFD\nXHJIpVxKy13ZT7pZo4IhnMO88MFOPkroSIngEi55i/CwcIbeOpTkGktYsWMdGy/c7JLjKuUqWu7K\nfjKZNVo4CdrP3Zj99+ZgDfgXm79IeGgEAR2fYeSRHjnPqZQbabkr+8lidqgcOZLp9twKCgxiwt1v\nk1J8F2tvuMT2v6q69PhK5YWWu7KffJw1em+Ne9n+6B8UPdicN4485PLjK5VbWu7KduJfHkM8+TNr\nVESoH16F/uU+5eMLkfzxh8vfQqlc0XJXtvPumSie8JvMuaACjuVJw8MdN7u7cdZoYsvR0L8ub4xL\nctt7KJUTWu7KVpKSYPJk2NYzjuJDEvmuUz04eNDtywHcER8ANxxk/o73OXrUrW+llFO03JWtLF8O\nR09e4XS1sbQ6H8ptcWH58r4dzhajTtwNpDQfwzuT9Onaynpa7spW3nkHSrSdw/nkEww/GJFv7ysI\nYw6Vg2L7mbrxIxIS8u2tlcqUlruyja1bYfOWVGg2kSblm9DyQmj+vfn69XRc+gsRwbW5VOs9Fi3K\nv7dWKjNa7so7ODG56J13oHDJM9QsV4FBzQYhmT4B0n1EhKVRC6i2bSWTJjme1aqUVbTclS0cPw5L\nlkB091JsiF5Ht1rdLMnRqFxDnu1diu3b4YcfLImgFKDlrmxi+nRICj7MA9GOJzyK5O9Ze3qN2v+K\n/xO38/p0N9z0noPlEZRv03JXXi852fGsjHJRr9Lxi9okJFt7NbNi8eKY8ltYdXoSJ05cZ0ctauVG\nWu7K661aBccunuBU6Y946OaHKBRQKHcHSlsmmG+/hYgIx+tcKFukLB0rdye13hwmzbyQuyxK5ZGW\nu/J606dDSOtppJgkBjYZmLuDpFsmGIBDhxyvc1nww+96DgpcZuqW2aSk5C6SUnmh5a7ynwuHIw4e\nhC++SoKGM2h3UzuqFs/lyoyZLBNMfLxjey40KNuA6kEtOF9lGmu+Ss1dJqXyQMtdebVZs0Aq/EC8\n30n639I/9wfKYpngLLc7YVzHYYTsGsiMWTpjVeU/LXfltZKSYPZs6FDnVg4MPED7m9rn/mBuWCa4\nU8329Gs0gM8/LcDx47k+jFK5ouWuvNZnn8GJk6n07QuVQivh7+f/9x3Wr3d8OGPMGMeywOm5YJng\nhx69TEq9mUycE5un4yiVU1ruymvNmAEh9z3PjL86kWryOK4dFeU4YMGCjtcuWiY4tOwp6NiX6TEz\nSNWhd5WPnCp3EWknIntEZJ+IDM3k65VEZJ2I/CQiO0Wkg+ujKvU/hw/DmnWXSaozl5CChfETF5yn\nREVB06bQsqXLlgmufENl6oe0J67KTL78Std6V/kn298IEfEH3gPaA7WAHiJSK8NuLwNLjDENgO7A\nFFcHVSq9uXOBOou4KnH0j8zDhdR8MLx9fyhyglEfr7A6ivIhzpzuNAb2GWP2G2MSgUVA5wz7GKBo\n2uehwDHXRVTq71JSYM4cKNp6OrVL1ubWSrdaHem6OtZsR5HUcH5Imc7p01anUb7CmXIvD6R/bHxs\n2rb0RgA9RSQWWA08ndmBRKSPiMSISMxp/SlXzsowc3TXsIUcTvyJi0W20qdRH0vXkXGGv58/veo8\ngQm8xNz3daF3lT+cKffMfnMyLmbaA5hnjKkAdADeF/nnIKgxZoYxJtIYE1myZMmcp1W+J5OZo9Xe\n7EN0wo+MbvUGPev2tDafkybe/28a79zCgjmFdClglS+cKfdYoGK61xX457BLNLAEwBizGSgElHBF\nQOXjMpk5WiglnnEp/8ewlkMoFlTMomA54+/nT3Q07Np/jk1bcnlh1UVr3yjf4Ey5bwWqikhlESmA\n44Lpygz7HAbaAIhITRzlruMuKu+ymCF6w6VDpKR616Ittdv8DM+XY8RHK3Ne1C5e+0bZX7blboxJ\nBgYAa4DdOO6K2SUiI0WkU9puzwO9ReRn4CPgUWP0j0/lAlnMED0WFuCa2x/zUdPKdShMKUrvGIHp\nncOidvHaN8r+nPrtMMasNsZUM8ZUMcaMSdv2qjFmZdrnvxljWhhj6hlj6htjvnJnaOVDMpk5ejkQ\nfn7mQY+/kJqRv58/D1Z9gtE7f0Wu5LCo3bD2jbI37zr1Ud4vp8MR6WaOGoRDQUXo19mfJoPfyZe4\nrjai8+NUisvii9crajesfaPsTctd5Z/cjhtHRXH5llYULXiSqi/4kdz9AYoHF3d/XjeoGFqB46FB\nmX/xekXtprVvlH1puav8k4dx46WnW3KpyFkqFK1A30Z93RQwf8S9NJzLZHhaVHZF7aa1b5R9iVXX\nPSMjI01MTIwl760s4udHpjd5i5Ddqlq3h/3MicRi/H6pAiJufAD2tYeIOLuaZC691WghD2wfSgVi\nkfBwR7E7U9T5lE95LhHZZoyJzG4/PXNX+SeX48Z798LGxApEVfgEPz9x74XUnCwTnAfBQyOp1K0p\nsyOfctkiZUqlp+Wu8k8ux43nzAG5fRTvdHuRK0lX3Bgw/7RtXRBqLWN8yfjsd1YqF7TcVf7Jxbhx\nUhLMe/8qAfXnceeFUIICs7gY6WVuKhFB5aN12FtjLbFHvWsylvIOWu4qf+VwzfRVq+BksU9ICoqj\n97Ey+ZMxnww6GQqhR3h53hqroygb0nJXHm3WLCjQbAaVrxSizfkbrI7jUn3/EgIvF+fjA/qUJuV6\nWu7KY8XGwupNB0ksv47ex8ril+kCpd4r0PjRde8txO9rwLp1ulqHci0td+Wx5s0Dcz6CTzts54nj\n9hqSuWb22RTCfh7OrFn2+h+Xsp6Wu/JIqakweza0aQOdbmlAyaQCVkdyiyD/RKIeTmbpzs85dVov\nrCrX0XJXHunrr+Fg8FIS7+lFXEJWi7HYw00dPif5gY4Mm/eF1VGUjWi5K480axYEtJhErN93FClY\nxOo4bvVU23sITCjDon3T9SlNymW03JXHOXkSlm/YTXL5DfRt1Mexbns+zRy1QqB/IG1LPM6lMqtZ\nse5I9t+glBO03JXHmTsXkuvNJEACeLT+o1bHyRfjuvcGMby2cpbVUZRNaLkrj5KaCtPnxBMQOZcu\nNbtQOqS01ZHyRe3yEVS82o6dl9Zx/vx1drTxXzDKtbTclUdZuxYOxiZwV6nHGdhkoNVx3CtDUc/r\nvAAzZz3z51uWSNmIlrvyKNOmQYnCxVje9y1aVGphdZx8dUfTEjRp7MfU6Ul6YVXlmZa7yn9ZDC0c\nOwafbtpN6+j/EFjAN+fjt3p0HXs7lmPB6t1WR1FeTstdeYw5cyC12VhWF7mPS4mXrI5jiX5da0PB\ni4xeM9XqKMrLabkrj5CcDFPnn8Wv7iIeqf8wRQsWtTqSJcJLlKJGajf2FZ7P/ljf/B+ccg0td+UR\nPvsMjpWaS6rfVfpF9rM6jqVe7dAfCl1k0LwPrY6ivJiWu/IIkyan4N9sCrdWvI2bS99sdRxLdW/e\njJBL9Vl9ehJJSXplVeWOU+UuIu1EZI+I7BORoVns84CI/CYiu0RETzmU0377Ddbt2E9wkQQGNn3G\n6jiWExEG13ubpE+msXKl1WmUtxKTzT1XIuIP7AXaArHAVqCHMea3dPtUBZYAdxhjzotIKWPMqesd\nNzIy0sTExOQ1v7KBp55yrAD558FEypTyx9/P3+pIlktJgSpVICJC5yypvxORbcaYyOz2c+bMvTGw\nzxiz3xiTCCwCOmfYpzfwnjHmPEB2xa7UNXFxMG/ReR7onkT5MgW02NP4+0PPfkf5NqQfqzfvtzqO\n8kLOlHt5IP1qRrFp29KrBlQTke9FZIuItHNVQGVvCxZA/K0v8m2dOiSnJlsdx6N07wE0nMWQ5ZOt\njqK8kDPlntkjYjKO5QQAVYFWQA9gloiE/eNAIn1EJEZEYk6fPp3TrMpmUlNh4owzSL2FtKveigC/\nAKsjeZQ6lcpz49Wu/Bo4m0Mn/rI6jvIyzpR7LFAx3esKwLFM9vnUGJNkjDkA7MFR9n9jjJlhjIk0\nxkSWLFkyt5mVTaxaBftvmIHxT+CZJnohNTOvtR8IBS8ycI4uOKNyxply3wpUFZHKIlIA6A5kvIa/\nAmgNICIlcAzT6EChuq43JyTi3/Q92kTcSe1Sta2O45F6tmpKkYtNWHXmHRKu6mP4lPOyLXdjTDIw\nAFgD7AaWGGN2ichIEemUttsa4KyI/AasA140xpx1V2jl/bZvhw0nPyWl8DFebPGC1XE82tP1h5L8\nRxsWfnzZ6ijKi2R7K6S76K2Qvu3hh+GTFal8uGk9Heu0RiSzSzsKHNcmatWCwoUhJgb0n8q3ufJW\nSKVc6uhRWLQInoj2o9PNd2ixZ8PPD55/Hraf3sScVTutjqO8hJa7yneTJ0Ny13sJvvMtq6N4jW49\nEpCHOvHS2petjqK8hJa7ylcXL8LkT7ZCjU8pXszqNN4jLKQQLYOe4tQNn/H5lt+tjqO8gJa7ylfT\npsGlm98kJCCU3o16Wx3Hq0x9fAAkFeL5ZW9aHUV5AS13lW8SEmD8nD1Q+2MGNOnns2u251aNiiWp\nk/w4e4MW8MPuI9l/g/JpWu4q38ybB2dqvk5B/0I81+w5q+N4pWkPD4YrxXh99i6roygPp+Wu8kVy\nMowbB3UuD2Rax6mUKlzK6kheqUXtcHqdPcJX77Xj5Emr0yhPpuWu8qZVK8dHNhYvhgMHYPRTDXm0\nfi+3x7Kzl4YGcjUphaET9LZIlTUtd+V2qakwcuIRwno9Rv3bdaw4r6pVg+r9/828gGbsPaoL8KnM\nabkrt/v4Y9hbchx/Vf4AJNXqOLYwtvvjEHCF6JkTrI6iPJSW+zVODi+onElJgWHjjiCRM+lVvxfh\nYeFWR7KFTs1rUO5CN75LmsS+Y2esjqM8kJa7cqtFi+DP8qPwC0jl1ZavWB3HVibdPwIC4uk57Q2r\noygPpOWu3CY5GYa9tQ8azKFf5JN61u5i991Wk4iLD7P17FpOnNTlgNXfabkrt1m4EA7tLcI9pfoz\n7PaXrI5jS4sfm4iZHsOb46/z7FkdcvRJWu7KLRITYeRIaFCtNJ/1f5cyIWWsjmRLjeuG8UjPACbP\nuMwvf+qdM+p/tNyVW0ybBvsrDSdq6CZdf9zNXnoliavRdeg683mroygPouWuXC4uDl6ZtRFajSS+\n9DdWx7G9alUCqR/Yjb2FPmDFlp+sjqM8hJa7crk3xqZysekgShUqz/PNB1kdxycsHvASXClG76XP\nY9XT1ZRn0XJXLhUbC2+t+QjKxzC+3esEBwZbHcknVKsUxr9CRnCmyDre+ORzq+MoD6DlrlzqpeHx\nJLUaSp1iDelZt6fVcXzKB8/2JeBCdSZ8vopUnQjs87TcVe4tXAhbtsC330JEBPtHL+T9Bf7cVvBp\npnSaiJ/oj1d+Ci0SyDv1vuP03Kl89JHVaZTV9LdP5c7ChdCnD1y96nh96BBlh/ehb9BSPhsymNvC\nb7M2n4968pESNGwovDjmIIfPnLU6jrKQlrvKnWHDID7+b5uCUuMZE/AsoaEWZVL4+cHoNy9w/N66\ndHp3qNVxlIW03FXuHD6c6eZiF3QRK6u1bx1GrYTe/Ow/i8Xfb7E6jrKIljv8Y+yYhQutTuT5KlXK\ndLOpWDGfg6jMrHxuBHKpHL1XPEWy3hrpk5wqdxFpJyJ7RGSfiGT5t56IdBURIyKRrovoZpmMHdOn\njxZ8dsaMgeC/3+aYXKggfq//n0WBVHpVKhbhsbIT+CtkO33DClsdR1kg23IXEX/gPaA9UAvoISK1\nMtmvCPAM8IOrQ7pVJmPHxMc7tqusRUWROm0Gx/xKkwqcKh5EwKzZEBVldTKVZvoz3Shy6i6WXKlG\nXLKPF7wPLp7mzJl7Y2CfMWa/MSYRWAR0zmS/UcA4IMGF+dwvi7HjLLer/3rnTBTlU4/z3F1dSdy/\nV4vdwwQECDGlovj1P59Q9PsvdMjRxzhT7uWB9A++jE3b9l8i0gCoaIzxvqlxWYwdZ7ldAXDwIAwb\ncYV/FdvMxITTVChawepIKqOFC6k2rh/hHEYwOuToY5wp98zW9PvvFRoR8QMmANkuSScifUQkRkRi\nTp/2kOVJMxk7JjjYsV1lyhjo9cwREvpWpuOtL+iqj55Khxx9mjPlHgukvwWiAnAs3esiQB1gvYgc\nBJoCKzO7qGqMmWGMiTTGRJYsWTL3qV0pKgpmzICCBR2vw8Mdr719iMGNY4wzZxo2FO1LYOG/aHtV\nnwDksXTI0ac5U+5bgaoiUllECgDdgZXXvmiMiTPGlDDGRBhjIoAtQCdjTIxbErtDVBQ0bQotWzrG\nG7y92N3ozz/h6fkzoOoXjL/7DSonBFkdSWUli6HF88WL53MQZYVsy90YkwwMANYAu4ElxphdIjJS\nRDq5O6DyHMnJ0PXJ30ls/Ry3l7+LAU2esjqSup5MhhwvB/gxoPklfj0ca1EolV8CnNnJGLMaWJ1h\n26tZ7Nsq77GUJxo3DnZcXEvRQiEsenCeLgzm6a79BRod7ZjHER7Obz2fZdGGRJIGl2XxR+j1EhvT\n307llB9/hOHD4cHKAzgwaA9li5S1OpJyRoYhx1tGP8uodoP5eLE/c9+/anU65UZa7ipb585Bx4Ff\nU6Lhd0ydCsWCb7A6ksqDIUOgfoetPLHzRj76/jur4yg30XJX12UMPND7MKduf4Cw7gMJDdOnQHg7\nf394/51qSEowj3z2AAdOn7Q6knIDLXd1XWPfvMrXxbpRKDiZlY8s0nF2m6hzUyiTb1tGcsAFmr/V\ng6SUZKsjKRfT31SVpW+/hZc2DIIKP/JBt7lULV7V6kjKhfrdV5fOAVM5EbSOThNesTqOcjEtd5Wp\ngweh07NrMZFTGNDwee6vdZ/VkZQbLHulF+VP9OarrQf4flMeh9x8cHEuT6blrv7h0iXo3Bnk4B38\nX5O5TLjnjax3Xr/e8aG8kr8/xLz2HhHbPuS+Ln4cOmR1Ijfw0ec1aLmr/2nVitSWrenaez+/xB5g\nyWI/hrZ7lAA/p6ZDKC9VplQgn3/mR3yBA9QZexd7jx+1OpLr+PDzGrTc1d88GxvFmuL/ouSzHWhz\np64b4ytq1oQ3373MpbDNNJ7Yibgrl6yO5Bo+vHialrv6r/HHOzKp5Xz8SuxjUc+p+Pv5Wx1J5aO+\nXerQt/gi4grt4OZRXbmanGh1pLzz4cXTtNyvsdPYcS7GGBctSWZww2+h0vcsvP8DWldu5faYyvNM\ne/4e7k6awZGCa7hlzGOkGi+f1+DDz2vQcrebXIwxfv019HzvLajxGW/tqUb3mx/Ip7DKE30xJpqG\n517nl+O7mTj1otVx8saHn9eg5W43ORxj3LgROnaEGhcHMOWX+gw6XiYfQqp8lcO/SkVg8/ihtDv6\nPS8MCGPBB148wcmuz2twgpa73eRgjHHzZkPbf0+lQpW/+PrLwvQ7E+rmcMpbFCggLFscxO2tr9Lr\ny850mzzS6ki556PPa9Bytxsnxxh//NHQasxQrrbtT9SbsyldOh+yKa8SHAyffRpI6ZBSLD07nB5T\n7D+UYSda7nbjxBjj+m9TuXXUIBJvGUfP6v149a6B+RxSeYsiIX7sGTeLUscfZtHpl7lv0qsYY7L/\nRmU5LXe7yWaMcfWXydw5KZqkyIk8XvsZ5j84GdEnNqjrCC3qz56xcyl7PJpPzo2iw5s+sg6Nly+n\noOVuR1mMMS5ZAp0fOoXfTV/xYuQIZt0/UVd5VE4JC/XnzwkzqXb8Zb6ccB9jxjiWg1aeS3+zfYAx\nMHL8eR7snkKTWuX4feAvjLtnuJ6xqxwJChJ2TR7Fw3c25OWXofULMzl7Kc7qWCoLWu42l5ICjzz7\nB8OPNKb6U/9m7Vq4sWwxq2MpLxUQAPPmQfSQ3/m2cH8iRrVg19FDPrs4lyfTcrex80khNHtoPR8U\nakpQsQvMeuFeChWyOpXyCtcZb/bzg1lv1GBQqTVc8ovljX51SX7iCZ9cnMuTabnb1K7Llajm34it\nNe6kTJFS/PLMFm4Nb571N+iZl8qhtwbcwcymmxi1Pp6AhIS/f9FHFufyZLqWqw0tXQq9Dg4m/slI\nbi/dic+i51G0YNGsvyGrJQvAZyZ8qNx5onMtzKUsVg/1gcW5PJmeudtIQgL0ejqWbt2gzlU/vtpy\nG+v6Lb1+sYNPL4uq8k58eHEuT6blbhN79hiqPjSVBWE3cc+QxWys/wxtk5Kcu9XRh5dFVS6QycS5\nywGwuOPdOuHJQk6Vu4i0E5E9IrJPRIZm8vVBIvKbiOwUka9FJNz1UVVmjIHXJx2n1uhOxNbrT8Ni\nrZnzSmsK+OVgsSc981J5kWHi3JXS5XmqZU26l5hBreEPcvT8GYsD+qZsy11E/IH3gPZALaCHiNTK\nsNtPQKQxpi6wFBjn6qDqn44cgQY9PmFYbB24cS3Dm77N1mdXUapwqZwdyIeXRVUukm7iXNCJWCYu\n+4VGF17nd1YQMbYuG3+0eOlgOz2vwUnOnLk3BvYZY/YbYxKBRUDn9DsYY9YZY64N2m4BKrg2pkov\nJQUmT4ZatWD33iQiQquya8AORtz9XO5mnPrwsqjKPcJC/YmZ8G8m3RxDUMxL3NGiKC+/DKfjbPL4\nPi/gTBOUB46kex2bti0r0cAXeQmlsrZjZwpVot7l6fcn0awZ7F76APuGfk+NktXzdmAfXRZVudeA\nbnU5uGQADz0EYz7YQJmxlRj0wUzvf8KTF3Cm3DObo57pVRIR6QlEAuOz+HofEYkRkZjTp087n1Jx\n4QLcP2gjDaZGcqjmQCK7rufLLw033og+61R5tGLFYP58mDe5DAUv1GXCn30oObQ5K7f9aHU0W3Om\n3GOBiuleVwCOZdxJRO4EhgGdjDFXMzuQMWaGMSbSGBNZsmTJ3OT1fjlcaS45GcZOjaXMgO4sD72d\nkJJnmXn3In58YSl+ftdZG8YHxxiVZ+v1r2qcfWsd9zKPc6mH6Px5E5qMGPiPu3A9gg0m9TlT7luB\nqiJSWUQKAN2Blel3EJEGwHQcxX7K9TF9jzHw6adw880wdPRxkm5cSZ/qr3Lyld95oumDuuiX8kpB\nQcInw3ux68m91DgzhB+/qErVqjBteqrnLEKWi+cQe6Jsy90YkwwMANYAu4ElxphdIjJSRDql7TYe\nCAE+FpEdIrIyi8OpbBgDK9dcJOLhMdw79TmMgRVTbuHkkCNM7/4awYHB2R9EKQ9Xq0oRdk96g+/e\nHkBEBPSb8iGlXr+RnlPG81fCZWvD2WRSn1PLDxhjVgOrM2x7Nd3nd7o4l88xBj7/z0We+WASB8u9\nBVXPU68F6G3aAAANBUlEQVTOvfwwKIWCBfyB4lZHVMrlWrSA776DdxffzLBvI1lYcDCLXhtP94qD\nmfJYP4oGFc7/UDaZ1KczVC2WmgorVkCNjqvotK4SB6u8TJ2iLfjuka3sGPqJo9i9/Ikwysvk83iz\nCAzsXo+L761hZPj3FLrQgIWnX6TM8x2YNet/oyP5xiaT+rTcLXL5Mrwy6VdubP4zXbpAwqG6NAq9\nm+97xfDLS5/RonKk1RGVL7JwvNnPD155tDkX31vD6IhNVNg3gt69oVLVi7QY9Ryb9+5xewbANpP6\ntNzz2Z6EMnRJbkjYwDaMPnczFxq8wocfwp8/VSRm6GKaRzSyOqLyZR4w3uznB8N6NWPPmtasXQvl\nm25iU+IUmn9UgwpD2/Pul6tISc1iJUpXsMmkPl3yNx8kJsKqVfDSiin83mIjFD1GUGIFom/6P0a/\n0JsSFgwrKpUpDxpvFoE2bWB7m3Zs2H6YFz6cwVaZwsAf/sWL68J586YdPNYjjJAQN7x5VBTMnOn4\n3EtvKdYzdzf68ad47hnyEeXDE7jvPjh25i+qXizO7O3NuDjqANOihlKisF4oVR7EQ8ebb29Ymh/f\nfIUTQw7xWOGPCTlyP8/0CaNsWYh8diyvLf2YK0kJ2R/Ih+iZu4sdOJTM6A+/ZvkfH3KhzHIIvkTT\n9suZ37ULbdsOJrBt2soMfvpPrzzQmDGOMfb0QzPOjjfn5gz32o0CTn5v6RIFmPNCV4zpyqanYPbc\nJOYxk227/uS1n0Kp69+Vp1s9xKOtWvr8zG09c3eBw4fh7behUauj3PheWeYktuOvcp/SrOiDLO/8\nDd/P7kyHDhAYqBOPlIfzkvFmEcdtlHNmBXJh1B4Gl/2KsnGd+Tl5MU9sbEO5buMZMQJ27EwmKSUH\ny1/biJ4+5oIxsHnbX7yz6kvWHlnJudiSsOZt6jcoR9Mi3Xnk1jt4/LYOFAwoaHXUnPHSsUXlYp4+\n3pzhbL9oEX/G9mnLWNpy6Ng0Ri76nF8vRzJyJLy2aBX+XZ6ghv+/6NGwE0+3v8uae+ctoOXupIsX\nYd06mLhuPpvj3+dqmQ3gn0RAiTBuq/w4cybDTTcJMMnqqEr5rPByQcwe1A0GwYkTMOHjMizYcxe7\nQlbw8i/zePmngpS52pIRtRdzX4cw7LzElZZ7FpKS4IvvjvP+xvV8d2QDp+dPJiXJn8DOWwmqcZJW\noc/S95stdIwXAta9ZXVcpVQGZcrA2KebMJaFnD2fxDsrNrJs5yr+uLSDJx8N5Umg9EP/pvSNZ+hU\nuy3RbVoRUTKHD7rxYFruaa5ehZgYWLx+JyuOTiU2YB2muGPShH+pG+j9wgs80LYKTZpNJLhQ2j/b\nZ61y9ibXZv5dveqY+TdmjMeNZSplR8VvCGTkY3cwkjtITYVtfWDNGphyKI6dyR+zc88sRu+B4Eu1\naRrck6G3DqVZShAh/lesjp5rPlvusceS+HjDL3zxy2Z2nN1E3NqnSPyzOVQ5jl/3D6iYehsty0Tz\nyG2taV2jQbor77n8J8tq5h9owSuVj/z84JZbHB8vM4ULF99l7pptrNixjh1X1vHNr6f4ZiT4yUoK\n9W1IxZceoUWl5nRt0ow769Ym0N87atM7UubR+QupbI6JZ9dPIWz46Tj/CevK1WLbITABCkDgDWVp\ne39nejeDps3bUKLEeQJcfavi9Wb+abkrZZmwogE8160Jz3VrAgzl4kXHH9hfPTWLeZdKsKfIGvac\nfJ85K4FlwdQ9NoGulftwc4MESlc9QpNqVXL3eEs3s1W5G+N4aPSyzTFs2Pszv5zaQWzqT1wN/Rl2\nPAZfvEuliBIU7RZIzeAnaV2tMT1ubU610pXSrY/upn8SD5r5p5TKWtGicNddcFf5xbx5BJLmnOCL\nLQdY9uMmth7dSty+mgyfB6bSD/BYKySxKDdcrU+VwvW5pUJ9eja5h8a1S+Fv8W32XlnuxsDB2ATW\n7tjLpr272Xl8F2ePh3Bh1WDi4oBB90LRo0hoCMUS69Eg6FE6PNKOfgugRIlAYH3+h65UyTEUk9n2\n69FxeqUsFRgodLrtRjrddiPQE3DcPff1D9VZtH0WP13YRmzyDrYWnMXWY/FM6bCFoHOlKN96NUm1\n51ItrDaR4bVpWasmt9euSlCB/LlF2uvKfcoUGPh9N5JvWg5+aQ/ZLezHDcXupnv3wdSrB1RaTNM6\npahXyYP+XMrNzD8dp1fKIxUtCl3alqFL22ggGoBLl1P4cus+zlWM4PdfYc3xcxxI+plDicv4zz7D\n/+0DVvhTe00sIweX4b773JvR68q9alVo9ucdFA6uTaPwGrSsXZNba1QnKLBQur1aWJYvS9fKODra\nUdbh4dmfhes4vVLWyeEErpDC/nRtVR1aXdvSE+jJ0VNX+DLmdzb/sZtdJ/4g9IbSBAW5NmpmvK7c\n27aFtm37WR0jd3I680/H6ZXyeuVLBRHdoQHRNMjX9/WQMQuVKQ9doU8p5fm03D2ZTZ4Io1Sm8vlx\nfr7G64ZlfEpuxumVcgV3LximNwu4nZ65e7qoKGjaFFq2hIMH9Qdf2UNuH+enZ/tO03LPLf0hUyr3\ncnOzgIUP7/ZGWu65oT9kSuVNbm4W8ICHd3sTLffc0B8ypfImNzcL6K3BOeJUuYtIOxHZIyL7RGRo\nJl8vKCKL077+g4hEuDqoR9EfMqXyJjeP89Nbg3Mk23IXEX/gPaA9UAvoISK1MuwWDZw3xtwETADG\nujqoR9EfMqXyLqc3C+itwTnizJl7Y2CfMWa/MSYRWAR0zrBPZ2B+2udLgTbyv2UW7Ud/yJTKf17y\n8G5P4cx97uWBI+lexwJNstrHGJMsInFAceCMK0J6HL3/XClrePrDuz2IM+We2Rm4ycU+iEgfoA9A\nJW8fwtAfMqWUB3Om3GOBiuleVwCOZbFPrIgEAKHAuYwHMsbMAGYAREZG/qP8fYL+j0AplQ+cGXPf\nClQVkcoiUgDoDqzMsM9KoFfa512Bb4wxvlneSinlAbI9c08bQx8ArAH8gTnGmF0iMhKIMcasBGYD\n74vIPhxn7N3dGVoppdT1ObVwmDFmNbA6w7ZX032eAHRzbTSllFK5patCegMdp1dK5ZAuP6CUUjak\n5a6UUjak5a6UUjak5a6UUjakF1SVUtbRmwXcRs/clVLKhvTMXSnlXfRs3yla7nmhP2RKKQ+lwzJK\nKWVDWu5KKWVDWu5KKWVDWu5KKWVDWu5KKWVDWu5KKWVDWu5KKWVDWu5KKWVDWu5KKWVDYtVzrEXk\nNHDIkjfPWgngjNUhcsCb8mpW9/GmvN6UFTwzb7gxpmR2O1lW7p5IRGKMMZFW53CWN+XVrO7jTXm9\nKSt4X970dFhGKaVsSMtdKaVsSMv972ZYHSCHvCmvZnUfb8rrTVnB+/L+l465K6WUDemZu1JK2ZCW\newYiMkpEdorIDhH5SkTKWZ0pKyIyXkR+T8v7iYiEWZ3pekSkm4jsEpFUEfHIOxBEpJ2I7BGRfSIy\n1Oo81yMic0TklIj8anWW7IhIRRFZJyK7034GBlqd6XpEpJCI/CgiP6flfc3qTDmlwzIZiEhRY8zF\ntM+fAWoZY560OFamROQu4BtjTLKIjAUwxgyxOFaWRKQmkApMB14wxsRYHOlvRMQf2Au0BWKBrUAP\nY8xvlgbLgojcDlwCFhhj6lid53pEpCxQ1hizXUSKANuAez3431aAwsaYSyISCHwHDDTGbLE4mtP0\nzD2Da8WepjDgsf/3M8Z8ZYxJTnu5BahgZZ7sGGN2G2P2WJ3jOhoD+4wx+40xicAioLPFmbJkjNkA\nnLM6hzOMMceNMdvTPv8L2A2UtzZV1ozDpbSXgWkfHtsFmdFyz4SIjBGRI0AU8KrVeZz0OPCF1SG8\nXHngSLrXsXhwAXkrEYkAGgA/WJvk+kTEX0R2AKeA/xhjPDpvRj5Z7iKyVkR+zeSjM4AxZpgxpiKw\nEBjgyVnT9hkGJOPIayln8nowyWSbV52teToRCQGWAc9m+CvZ4xhjUowx9XH8RdxYRDx66CujAKsD\nWMEYc6eTu34IrAKGuzHOdWWXVUR6Af8C2hgPuICSg39bTxQLVEz3ugJwzKIstpM2dr0MWGiMWW51\nHmcZYy6IyHqgHeDxF6+v8ckz9+sRkarpXnYCfrcqS3ZEpB0wBOhkjIm3Oo8NbAWqikhlESkAdAdW\nWpzJFtIuUM4Gdhtj3rY6T3ZEpOS1u89EJAi4Ew/ugszo3TIZiMgyoDqOuzoOAU8aY45amypzIrIP\nKAicTdu0xVPv7AEQkS7AJKAkcAHYYYy529pUfyciHYCJgD8wxxgzxuJIWRKRj4BWOFYuPAkMN8bM\ntjRUFkTkVmAj8AuO3y2Al4wxq61LlTURqQvMx/Fz4AcsMcaMtDZVzmi5K6WUDemwjFJK2ZCWu1JK\n2ZCWu1JK2ZCWu1JK2ZCWu1JK2ZCWu1JK2ZCWu1JK2ZCWu1JK2dD/A/XYTpumnbHZAAAAAElFTkSu\nQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"errorbar(x,y,dy,fmt='ro')\n",
"xt=linspace(-3.5,3.5,101)\n",
"plot(xt,fit(m.values['x0'],m.values['Gamma'],xt),'b-')\n",
"plot(xt,fit(0,1,xt),'g--')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python3.6",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}