

Abstract
The products of the electron width of the J/ψ meson and the branching fraction of its decays to the lepton pairs were measured using data from the KEDR experiment at the VEPP-4M electron-positron collider. The results are
$ \Gamma_{ee} \times \Gamma_{ee} / \Gamma = 0.3323 \pm 0.0064 \text{ (stat.)} \pm 0.0048 \text{ (syst.) keV}, $ $ \Gamma_{ee} \times \Gamma_{\mu\mu} / \Gamma = 0.3318 \pm 0.0052 \text{ (stat.)} \pm 0.0063 \text{ (syst.) keV}, $ $ \Gamma_{ee} / \Gamma_{\mu\mu} = 1.002 \pm 0.021 \text{ (stat.)} \pm 0.0130 \text{ (syst.) keV}, $

and can be used to improve the accuracy of the leptonic and full widths and test leptonic universality. Assuming e_{μ} universality and using the world average value of the leptonic branching fraction, we also determine the leptonic $\Gamma_{\ell\ell} = 5.59 \pm 0.12$ keV and total $\Gamma = 94.1 \pm 2.7$ keV widths of the J/ψ meson. V. V. Anashin, et al., Phys. Lett. B 685, 134 (2010), arXiv:0912.1082.

1. VEPP-4M collider and KEDR detector

Figure 1: VEPP-4M/KEDR complex with the resonant depolarization and the infrared light Compton backscattering facilities.

One of the main features of the VEPP-4M is a possibility of precise energy determination. Between calibrations the energy interpolation in the J/ψ energy range has the accuracy of $6 \cdot 10^{-6}$ ($\simeq 10$ keV).

2. Experiment description

At the *i*-th energy point E_i and the *j*-th angular interval θ_j ,

the expected number of $e^+e^- \rightarrow e^+e^-$ events was parameterized as

 $N_{\exp}(E_i, \theta_j) = \mathcal{R}_{\mathcal{L}} \times \mathcal{L}(E_i) \times \left(\sigma_{\operatorname{res}}^{\operatorname{theor}}(E_i, \theta_j) \cdot \varepsilon_{\operatorname{res}}^{\operatorname{sim}}(E_i, \theta_j) + \sigma_{\operatorname{Bhabha}}^{\operatorname{sim}}(E_i, \theta_j) \cdot \varepsilon_{\operatorname{Bhabha}}^{\operatorname{sim}}(E_i, \theta_j) \right)$ $\sigma_{\operatorname{inter}}^{\operatorname{theor}}(E_i, \theta_j) \cdot \varepsilon_{\operatorname{inter}}^{\operatorname{sim}}(E_i, \theta_j) + \sigma_{\operatorname{Bhabha}}^{\operatorname{sim}}(E_i, \theta_j) \cdot \varepsilon_{\operatorname{Bhabha}}^{\operatorname{sim}}(E_i, \theta_j) \right)$ where $\mathcal{L}(E_i)$ — the integrated luminosity measured by the

Figure 2: Observed cross section of $e^+e^- \rightarrow$ hadrons.

A data sample used for this analysis comprises 230 nb⁻¹ collected at 11 energy points in the J/ψ energy range. This corresponds to approximately 15000 $J/\psi \rightarrow e^+e^-$ decays. During this scan, 26 calibrations of the beam energy have been done using resonant depolarization.

3. Theoretical $e^+e^- \rightarrow \ell^+\ell^-$ cross section

The analytical expressions for the cross section of the process $e^+e^- \rightarrow \ell^+\ell^-$ with radiative corrections taken into account in the soft photon approximation were first derived by Ya. A. Azimov *et al.*, JETP Lett. **21**, 172 (1975). With some up-today modifications one obtains in the vicinity of a narrow resonance:

luminosity monitor at the *i*-th energy point; σ^{theor} — the theoretical cross sections for resonance, interference and Bhabha contributions, ε^{sim} — the detector efficiencies obtained from simulation.

In this formula the following free parameters were used: the product $\Gamma_{ee} \times \Gamma_{ee} / \Gamma$, which determines the magnitude of the resonance signal; the electron width Γ_{ee} , which specifies the amplitude of the interference wave; the coefficient $\mathcal{R}_{\mathcal{L}}$, which provides the absolute calibration of the luminosity monitor.

The dominant uncertainty of the $\Gamma_{ee} \times \Gamma_{ee} / \Gamma$ result is associated with the luminosity monitor instability.

Figure 4: Fit to experimental data for $e^+e^- \rightarrow \mu^+\mu^-$.

Figure 6: $\Gamma_{\ell\ell}$ comparison

where a correction δ_{sf} follows from the structure function approach of E. A. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys. **41**, 466 (1985).

The expected number of $e^+e^- \rightarrow \mu^+\mu^-$ events was parameterized in the form:

 $N_{\exp}(E_i) = \mathcal{R}_{\mathcal{L}} \times \mathcal{L}(E_i) \times \left(\sigma_{\operatorname{res}}^{\operatorname{theor}}(E_i) \cdot \varepsilon_{\operatorname{res}}^{\operatorname{sim}}(E_i) + \sigma_{\operatorname{bg}}^{\operatorname{sim}}(E_i) \cdot \varepsilon_{\operatorname{bg}}^{\operatorname{sim}}(E_i)\right) + F_{\operatorname{cosmic}} \times T_i,$

with the same meaning of $\mathcal{R}_{\mathcal{L}}$ and $\mathcal{L}(E_i)$ as for $e^+e^- \rightarrow e^+e^-$. $\mathcal{R}_{\mathcal{L}}$ was fixed from the $e^+e^- \rightarrow e^+e^-$ fit and T_i is the live data taking time.

The following free parameters were used: the product $\Gamma_{ee} \times \Gamma_{\mu\mu}/\Gamma$, which determines the magnitude of the resonance signal; the square root of electron and muon widths $\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}$, which specifies the amplitude of the interference wave; the rate of cosmic events, F_{cosmic} , that passed the selection criteria for the $e^+e^- \rightarrow \mu^+\mu^-$ events. The dominant uncertainty of the $\Gamma_{ee} \times \Gamma_{\mu\mu}/\Gamma$ result is associated with the absolute luminosity calibration done in the e^+e^- -channel.

Figure 8: $\Gamma_{ee}/\Gamma_{\mu\mu}$ comparison